


DjangO 3
for beginners



Dedication
Foreword

About this book
PYTHON 3

Introduction
Why Python?
Syntax and Variables
What is a variable
Basic Data Types in Python
Variable Manipulation
Variable Assignment
Arithmetic Expressions
Variable Names
Data Types in Python
List
Tuple
Set
Dictionary
Data-type Methods
List Methods
Set Methods
Dictionary Methods
Data typecasting
User Input
Conditional Expressions
What is a Conditional Expression?
What is a Logical Expression?
Logical comparison
Logical Operator: And
Logical Operator: Or
Logical Operator: Not
Code Blocks
IF statements
else and elif clauses
Programming Loops
Introduction
For Loops



While Loops
Programming Functions
Introduction
Parameters of a function
Return value of a function
Docstrings
Type Checking
Recursive functions
Object-Oriented Programming
Introduction
Classes and Instances
Class Methods
Dunder Methods
Class Inheritance

DJANGO 3
Why Django?
Web Framework
Popularity of Django
Model-View-Controller Pattern
Model
View
Controller
Environment Setup
PostgreSQL on Windows
PostgreSQL on Linux (with Docker)

BASICS
Projects vs. Application
Theory
Practice
Connecting to the Database
Configuring PostgreSQL
Configuring Django Connection
Django Database Migration
Creating a new Application
manage.py startapp
Designing the Blog Schema
Creating a superuser



Django Admin Site
Djangos ORM - Django Shell
Theory
Practice
Creating Views
Theory
Practice
URL patterns
Theory
Practice
Template Views
Theory
Practice

APPLICATION
New Profiles Application
Theory
Practice
Testing the Profile Model
Problem with the Profile Model
Discovering the (foreseeable) Issue
Solution
Django Signals
Emit and Listen - Send and Receive
Automating the creation of Profile
Verifying the results
Delete Profile automatically
Account Creation
Accepting User Input using Forms
Register Form
Creating User Register View
URL pattern for Register View
Creating Template for the Register View
Verifying the Register View Results
Adding Django Plugin “Crispy Forms”
Django Messages Framework
Login and Logout
Creating Views



Creating Templates
global Navigation Bar
Creating Profile Frontend
Profile View
Profile URLs
Profile Template
Profile Update Forms
Profile Update View
Profile Update URL
Profile Update Template
Password Reset
Setting Up SMTP Host
Password Reset Views
Password Reset Templates
Testing Password Reset

VIEWS
Generic Class Based Views
Introduction
Template Naming Convention
Blog Create View
Basic Use Case of Generic Views
Extending Generic View
Blog Update View
Blog Delete
Generic Delete View
Delete Confirmation Template
Blog List View
Generic List View
List View Template
Blog Detail View
Generic Detail View
Template for Generic Detail View
Blog Content Length
Blog Content Length Validator
Blog Creation link

ADVICE
Advice Application



Question and Answer Schema
Registering Models in the Admin site
Views
Question Create View
Question Update View
Question Delete View
Question Detail View
Question List View
Testing Question Views

REST API - DRF
Decoupling Backend & Frontend
Introduction
Our Use Case
AJAX & Django Views
Django Rest Framework (DRF)
Why DRF?
Installing Django Rest Framework
Creating Advice List View
Advice List View URL Pattern
Advice List View Testing
Advice Create Serializer
What is Serializer?
Create Serializer
Creating Advice Create View
Advice Create View URL Pattern
Embed Advices
Create Advice on Question Detail Page

CLOUD DEPLOY
What is serverless deployment?
Google Cloud Run + Docker
What is Docker?
Installing Docker
Setting up Google Cloud
Setting up a google cloud project
Installing Cloud SDK
Setting up CloudSQL
Cloud Storage bucket



information in Secret Manager
Cloud Build access to Cloud SQL
Preparing Code for Deployment
Installing Modules
Creating Super User
Creating Data Migration for Superuser
Configuring the settings.py file
Changing Image URLs in our REST APIs
Containerizing the project
cloudmigrate.yml
Deploying the Django App
Attaching a domain

QUIZ
Question 1
Question 2
Question 3
Question 4
Question 5
Question 6
Question 7
Question 8
Question 9
Question 10
Solutions

Bibliography
Code Contents
Figure Contents
Table Contents



Dedication
Thank you Dominique Zillmann, for broadening my understanding of the

world, the true face of the human kind. I had great fun all over Spain. Ah and,
bfb nuttöö.

A big thank you goes to my parents, for supporting me in every possible
way on every journey.

The most applause goes to me. For being awesome, cute, perfect and very
humble. Couldn’t have done it without you.



Foreword
I’m glad you’ve made it this far. In this book, you will learn to create a

web application with Django 3, a web framework for the Python
programming language. You will learn the essential web development
concepts and all the necessary information to get started with Django 3. But
before Django 3, we will learn the basic concepts of programming and the
Programming Language Python 3.9.
 

We will build a blogging web application with added features.  Users will
be able to post blogs. The application will also have a feature that allows
users to post questions and provide answers to them.
 

Our blog application will be focused on the theme of finance; that is, our
blogs will be focused on finance and how people can improve their finance,
do their taxes, tips on savings, etc. Our question/answer section will be
focused on finance, as well.
 

If you note, you can convert this application to any theme you like, i.e.,
tech, writing, etc. We, however, will be making this blog a website that
focuses on finance.
 

By the end of this book, you’ll have enough knowledge in Django 3 and
web development, in general, to build web apps on your own. You’ll also
know how to deploy your Django 3 Application in a Serverless Environment
in a Cloud.
 

About this book

This book is designed to be used both digital and printed. Therefore, I
have made plenty of screenshots for people who like to read the book (ebook
and printed) without immediately implementing the code. This ensures a
smooth and hassle-free reading experience.



 

If, on the other hand, you want to learn the contents as quickly as
possible, you can clone the official GitHub repository and save time. I highly
recommend you not to use the GitHub repository at the beginning of this
journey, especially if you are new to Django. Type the code symbol by
symbol yourself. You can find the Github Repository:
https://github.com/AndreyBulezyuk/Django-3-Book.
 

This ensures that you fail quickly in the beginning and learn about the
common pitfalls (like forgetting to execute the migrations, not updating the
Entity, etc.). You deprive yourself of this learning opportunity when simply
clone the code.
 

The structure of the content is somewhat different from other
programming books. It’s a mix of theory and practice – where practice comes
first, and the theory bits are injected into the sub-steps. This ensures that you
learn the practical and real-world workflow of building a Django Website.
And while you are practicing it, you are learning the theory in tiny-sized bits
just at the right time. This way, you won’t be overwhelmed by the dry theory.
I genuinely believe that this format will have the best impact on your learning
journey.

Scientific literature has shown that the best way to learn is by doing, so
always try to solve the problems at the end of the chapter. If you are having
difficulty solving some of them, do not worry – nobody said programming
was easy, remember to take a break when you are feeling tired and be sure to
go through the example problems and their solutions.



PYTHON 3

Introduction
This is an Introduction to Python 3, which means we will cover the

Basics of Python3 and the basic concepts of programming. Python 3.9 is the
current stable release, which means you will be learning the newest stuff
there is.

Why Python?
Python 3 is easy to learn, it is the fastest growing language in the world,

which means it has a large community behind it, it has thousands of different
libraries with new ones being added every day, it is widely used for Machine
Learning, Cloud Computing, Web Development, Web Scrapping, Desktop
Development and pretty much anything you can think of (even Game & App
Dev).

Python is an interpreted, object-oriented, high-level programming
language. Interpreted means that every python code file is ‘ready to go’ and
does not require any additional steps to run it, object-oriented means that the
language is designed with the intent of creating high-level complex
abstractions called ‘objects’. Python by design is highly readable, that
coupled with the large quantity of different libraries and a strong community
is what makes it a beginner friendly language.

Syntax and Variables
What is a variable

Think of a variable as a name referring to an object. For example,
consider you have a dog and you are describing him to a friend, when you
say ‘Max is a young puppy’ Max is just an identifier and every time you use
the word ‘Max’ what you are actually thinking of is the dog itself.



myDogName = 'Max'
print(myDogName)
myDogName = ‘Max’

In programming it is exactly the same - when writing ‘myDogName’
what I actually am referring to is ‘Max’ - the name of my dog. To see that
this is the case we can simply use the ‘print’ command to retrieve the content
of the variable.

Basic Data Types in Python

In most programming languages the programmer must specify
beforehand what type will the type of data stored in that variable be, the most
common of those types are – natural numbers (integers), decimal point
numbers (floating point real values) and text (strings).
 

In Python this process is handled automatically and is hidden from the
programmer and thus makes the code much easier to read. To see for yourself
we will use the built-in ‘type()’ function which gives us as a result the
underlying type of the variable.

myString = "A great day to learn Python"
print(type(myString))



myInt = 42
print(type(myInt))

myFloat = 3.14
print(type(myFloat))

Variable Manipulation
Variable Assignment

This is one of the most fundamental operations you will deal with as a
programmer, since if variables are empty boxes, assigning a value to them is
the act of filling them up. The assignment is done by using the ‘equals’ (=)
sign. To demonstrate how the assignment operator works and how the data
type changes between assignments we will use the ‘type’ and ‘print’
functions we just discussed in the following example.
 
 

myVariable = 10
print(type(myVariable))

myVariable = 10.1
print(type(myVariable))

myVariable = "Yes, I can do this"
print(type(myVariable))

In this example you can clearly see that variables are ‘dynamic’ in nature,
that is they do not have a predefined type or property they must adhere to.
That is why I am first able to use the variable to hold a natural number, then a
float, and then a string.

This leads us to another important aspect of the process of assignment,
there are two parts to the assignment the ‘Left-Hand Side’ and the ‘Right-
Hand Side’ or for short ‘LHS’ and ‘RHS’, determined by which side of the
equals sign they are situated. The LHS is the variable that is being assigned
to while the RHS is what is being assigned.



In other words, the LHS is the box and the RHS is the data that goes into
the box. Note that this is not exactly what is happening underneath the hood,
in actuality everything in Python is an object and variable names – point to
these objects, but for now this is the analogy we will go with.

In the following example you will see that both the RHS and the LHS can
be variables and thus our box-data analogy is not very clear, since both sides
appear to be boxes. What assignment means in this case is that we want to
copy the data contained in the RHS and just like before put that copy into the
LHS box. Keep in mind copying the contents is not always the case, when we
are dealing with objects, but more on that in Chapter Six.

A = 1000
B = A   # B is the LHS and A is the RHS
print(B)

C = "My Sentence"
D = C
print(D)

#Note we can overwrite the already
#existing contents of the LHS with assignment
E = "Pizza"
F = "Broccoli"
E = F
print(E)

Note that when assigning data values to variables, the variable should
always be on the left-hand side of the assignment operator. Because data is
not a variable and thus by our box analogy is not a box and therefore cannot
hold data.

myVariable = 20
10 = myVariable
#This will result in an error 'Cannot assign to literal'
#Which is very intuitive, since 10 is not a box and doesn't make sense for it to hold

anything



This is an example shows what not to do, using our previous analogy –
variables are the boxes in which we put in our objects(data), thus it does not
make sense to try and put anything inside data, because by definition only
boxes can contain things.

Another example of what not to do is, assigning a variable that has not
been defined yet

myVariable = 10
myVariable = somethingNotDefined
#This results in a 'not defined' error, because
#Python cannot evaluate the RHS, since we've never specified what it means

In the following example you will see how we can combine our
knowledge of the dynamic nature of Python variables and how the
assignment operator works.
 
 

A = 10
B = "Not a number"
A = B
print(type(A))

Arithmetic Expressions
We learned what variables are, their types and how to assign them. Now

we will focus on the numeric types of data and how create arithmetic
expressions, just like we learned in school.

a = 10
b = 20
c = a + b
print(c)

Note that even though in this case the result is the same, arithmetic
expressions in programming are not the same as solving mathematical
equations, thus it is best not to think of the above example as finding the



unknown variable – c, but more in terms of what we discussed in the previous
paragraph – LHS is the variable to which we will assign the result of the RHS
expression. If we keep this in mind the principles are the same as previously
discussed and we will focus on evaluating the RHS expression.

We will discuss and show examples of the classic mathematical operators
– addition, subtraction, multiplication, and division.

print(50+10)
print(50-10)
print(50*10)
print(50/10)

Everything works as you would expect it to, each of them is binary which
means it needs two variables or pieces of data – called operands. The
subtraction operator can also be unary, meaning it can take a single operand,
that is the operation called – negation. Also, it is worth noting that when
calling the division operator regardless if the result is a whole number, the
type of the result is always ‘float’, when a variable is of type float even
though it’s a whole number Python displays the number as 10.0 to remind
you of it.

myVariable = 100
print(-myVariable)

floatExperiment = myVariable/10
print(type(floatExperiment))

There are three other operators beside the classical ones – exponentiation,
modulo, and floor division.

print(2**10) #Exponentiation

moduloDivision = 999%100
print(moduloDivision)



floorDivision = 999//100
print(floorDivision)
print(type(floorDivision)) #Floor Division

The first operand in exponentiation Is the base number and the second
operand is its power, hence 2 to the power of 10 is 1024. Modulo Division is
the act of taking the remainder of the division of the first operand by the
second operand. Floor division on the other hand acts the same way as
ordinary division, but it always rounds down to an integer value, so in other
words – division without remainder.

Another aspect of arithmetic expressions is the problem of operator
precedence, just like in mathematics division and multiplication have a higher
priority than addition and subtraction, additionally exponentiation has the
highest precedence of them.

If we want to enforce a specific order of operations, just like in math class
– we use brackets and if you are not certain on which operator takes
precedence it is always a good practice to use brackets.

noBrackets = 1000/10+50
print(noBrackets)

withBrackets = 1000/(10+50)
print(withBrackets)

Note that the same problems outlined in the previous paragraph apply
here and for any future chapters as well. Using not defined variables will
result in an error.

A = 10
B = 20
C = 100
Result = A + B + C + Z   # Z is not defined
print(Result)



This will be a common theme in this book, so make sure you think about
how what we have previously learned can be applied to what we are currently
learning as this is the basis of advanced programming.

Variable Names

There are four rules to which every Python variable name must adhere to:
 

A variable name must start with a letter or the underscore
character

A variable name can only contain alpha-numeric characters and
underscores

Variable names are case-sensitive (git, Git and GIT are three
different variable names)

Keywords cannot be used as variable names

Keywords are reserved words which cannot be used as variable or
function names, each of them serves a specific purpose and using the
keyword invokes a certain behavior from Python. Examples of keywords are:
if, elif, else, def, import, False, True, del, break, continue, for, from, while
etc.

The following example lists valid and invalid variable names in Python

#Valid variable names:
myvar = "GitAcademy"
my_var = "GitAcademy"
_my_var_ = "GitAcademy"
myVar = "GitAcademy"
MYVAR = "GitAcademy"
my42var = "GitAcademy"
MY999__VAR_999 = "GitAcadmy"

#Invalid variable names:
my-var = "GitAcademy"
9myvar = "GitAcademy"
my var = "GitAcademy"
continue = "GitAcademy"



Data Types in Python
List

A list is a collection of objects. Lists are characterized for being:
 

Ordered – items in the list have an order that does not change
Changeable – We can change, add, and remove items in the list
Allows Duplicates – We can have more than one item with the

same value

A list is a collection of objects enclosed by square brackets

myLetters = ['a','b','c','d']
print(myLetters)

Note that with Lists we can hold values and variables of different types,
so an expression like this is completely valid

myVariable = 'Variable'

myList = [1, -1, 3.14, 'GitAcademy', myVariable]
print(myList)

Tuple

Tuples are collections of data that can hold multiple items in a single
variable. Tuples are characterized for being:
 

Ordered – items in the list have an order that does not change
Unchangeable – After creating the tuple we cannot modify its

contents
Allows Duplicates – We can have more than one item with the

same value



A tuple is a collection of objects enclosed by curved brackets

myTuple = (1,-1,3.14,'GitAcademy')

Notice that we can use variables when defining our tuple, however once
the tuple is defined all of its member objects are immutable – meaning
unchangeable.

myFloat = 3.14
myString = 'Some String Data'

myTuple = (myString, myFloat)
print(myTuple)

Set

Sets, similarly to tuples are collections of data that can hold multiple
items in a single variable. Sets are characterized for being:
 

Unordered – items in the set do not have an order
Unchangeable – After creating the set we cannot modify its

contents
Duplicates Not Allowed – Sets cannot have two items with the

same value

A set is a collection of objects enclosed by curly brackets

myVariable = 'GitAcademy'

mySet = {1, -1, 3.14, 'Joe', myVariable}
print(mySet)

Notice that running the first example numerous times, displays the
members of the set in a different order – that is a direct cause of the collection



being ‘unordered’.

In the following example take note of the third property of sets – not
allowing any duplicates. In this case the contents of myVariable are
GitAcademy and I have entered GitAcademy as a string literal a second time.

myVariable = 'GitAcademy'

mySet = {'GitAcademy', myVariable, 3.14}
print(mySet)

As expected, the resulting tuple contains GitAcademy only once.

Dictionary

A dictionary is a collection of key: value pairs. Dictionaries are
characterized for being:
 

Unordered – items in the dictionary do not have an order
Changeable – We can change, add, and remove items in a

dictionary
Duplicates Not Allowed – Dictionaries cannot have two items

with the same value

I will only demonstrate how a dictionary looks like in order to frontload
the concept, however do not worry about how they work exactly as we will
discuss that in the following segment.

myDictionary = {
'Year Of Graduation': 2020,
'Final Grade': 10.0,
'Name of Student': 'John Doe',
}

print(myDictionary['Name of Student'])



Data-type Methods
As the name suggests data-type methods are methods(functions) that are

specific to a certain data type. They make it possible for us to interact with
these objects in many different ways, most common of which are – adding
elements, removing elements and searching for elements.

First of all, we should note that the ‘.’(dot) operator is used to access class
members that are defined for that object. The class is the template for the
object and class members can be variables and functions. For now, do not
worry too much about it, we will discuss at length what exactly does that
mean in Chapter Seven, for now we just need a working understanding of the
concept – that is, every time we use the dot operator, we are accessing a
member of the object.

List Methods

List are quite likely the most used type for collections of objects and this
is why it is very important to build a solid understanding of how to
manipulate them, since as of now the different collections of objects we
introduced, seem somewhat static and dull. Worry not, when we get through
what data-type methods are and how to use them you will gain an
appreciation for the complexity they allow for and the elegant ways in which
they can be used for problem-solving.

Consider this introductory paragraph as a way for the author to stress how
important the following segment will be for a proper introduction into
Python. Unless you are already confident in these concepts consider
revisiting this section at least a few times.

As of now we learned how to define different collections of objects and
what their properties are. Now we will introduce methods to interact with
lists, first and foremost we will explain the list append method that will allow
us to add new items into the list.



Retrieve by Index

Since lists are ordered, that means we can index them. The act of
indexing means that we can retrieve an element from a list using its index
number. The index number tells us how many elements after the first one, our
element is situated at, so an index number of 1 means that this is the second
element (remember that in programming counting always begins from 0). An
index number of 5 means this is the sixth number and so on and so forth.

I will take this as an opportunity to mention the ‘len()’ method which
returns the number of elements in the collection. If we have an empty list –
len() would yield the number zero. If we have 3 elements in the list – len()
will yield the number 3 and in general If we have n elements in the collection
len() will give us the number n.

Len()

myList = ['Orange','Apple','Banana']
print(len(myList))
print(myList[5])

We define the list in the same way as previously discussed. When using
the ‘len()’ function we see it returns the number 3, which is exactly the
number of elements in the list. Indexing the list is done with the notation used
in the second print statement, we can see that retrieving an item at an index is
done by using the variable name immediately followed by square brackets
containing the index number.

Note that if we use an index number that is larger than the number of
elements minus one (since we are counting from zero) we will get a ‘index
out of range’ error and the program will not run.

append()



Instead of retrieving an item in the collection – appending is the act of
adding one new item at the end of the list.

myList = ['Orange','Apple','Banana']
print(len(myList))
myList.append('Chocolate Bar')
listLength = len(myList)
print(listLength)
print(myList[listLength-1])

In this code snippet we are using the same list as in the previous example
and we want to add another item to it. To do that we use the append() class
method (I am specifying it is a class method since you cannot append items
to a tuple for example – it is specific to objects of type list).

After we execute the append command, we save the result of the len()
command into a variable. When printing the same variable, we can now
clearly see that the number of objects in the list has increased by one which is
indeed what happened.

We can now use retrieval by index to print out our newest addition to our
collection. As we previously mentioned – the appended item goes to the back
of our list, so to retrieve it we used the last index which is the length of the
list minus one (because the first item is with an index of zero).

Insert()

The insert command is similar to append with the added caveat of us
being able to specify at which index do we want to add a new object to the
list. The insert method takes in two parameters, the first one being the index
at which we would want to insert our new object in the collection and the
second one being the object itself.

myList = ['Orange','Apple','Banana']
print(myList[0])



myList.insert(0,'Chocolate Bar')
print(myList[0])

Here we inserted our newest object at the first index – meaning the front
of the list. As you can see after the insertion when we retrieve the first object
it is indeed the object we just added. This implies the natural consequence
that when we insert an object at the I-th index the indices of all objects after
the I-th index will increase their index by one, while the indices of the objects
before the insertion index will remain the same.

Pop()

In the same way we used append and insert to add new entries into our
collection – now we can remove items with the pop method. Pop() takes in a
single argument – the index of the item we would like to remove.

myList = ['Orange','Apple','Banana']
print(myList[0])
myList.pop(0)
print(len(myList))
print(myList[0])

Using the same example, we can verify that the first item in the collection
is indeed ‘Orange’ and as you might expect when we pop the element at the
first index (which is specified by the number zero) the length of the list
shrinks by one and the new first item is our previously second item.

Again, the same principle applies as with insertion, but in reverse – when
we delete the I-th item from the list the indices of all subsequent items are
reduced by one, while the indices of items before the item we have removed
remain unchanged.

Set Methods

The concept of a set first arose in the field of mathematics and operations



with sets are fundamentally mathematical. The defining feature of a set is that
it is both unordered and does not allow duplicates. Which implies that all
elements in the set share a similar property (hence why they are in the same
set).

 

Add()

The add method is used to add another object to the set, it takes in a
single parameter – the object to be added.

expensivePets = {'Parrots','Monkeys','Tigers','Lions'}
expensivePets.add('Tigers')
print(expensivePets)

In this example you can see a set of items – in this case animals, which
share the common property of being expensive. It just so happens that we add
an animal that was already in the set. As expected, the updated set remains



the same as ‘Tigers’ were already in the set of expensive animals. It is
important to understand why this is the case. If we think of the set as a
collection of objects sharing the same property it does not make sense to add
‘Tigers’ a second time to the set since an object can either have or not have a
certain property.

Intersection()

Intersection is a method of a set that takes in any number of sets as its
parameters. If as previously discussed, sets contain elements with the same
property, then an intersection of sets is a set containing the elements that
satisfy all of the properties.

expensivePets = {'Parrots','Monkeys','Tigers','Lions'}
dangerousAnimals = {'Lions','Tigers','Hyennas','Rhinos'}
dangerousPets = expensivePets.intersection(dangerousAnimals)
print(dangerousPets)

In this example we have our previous set of expensive pets and another
set of dangerous animals and we make the observation that expensive pets
that are dangerous animals are indeed dangerous pets to own.

That is exactly what we achieve by using the intersection method. When
we call the intersection method it takes only the common elements to all sets.
Which if properly labeled are animals that are both expensive and dangerous.

expensivePets = {'Parrots','Monkeys','Tigers','Lions'}
dangerousAnimals = {'Lions','Tigers','Hyennas','Rhinos'}
dangerousPets = dangerousAnimals.intersection(expensivePets)
print(dangerousPets)

Notice that this is exactly the same example, however we have called the
intersection method from the other set and the result remains the same. This
is so, because taking the common elements of several sets is a commutative
operation – that is, it does not matter what the order of operations is – just



like with addition 7 + 5 = 5 + 7.

Union()

Similarly, to the intersection method – union takes any number of sets as
parameters. Continuing with the notion that sets are collections of objects
with the same property – the union method returns a set that contains all of
the elements from all sets. So, in a sense it is the dual operation of
intersection.

lowNumbers = {1, 2, 3 ,4, 5, 6}
highNumbers = {4, 5, 6, 7, 8, 9}
allNumbers = lowNumbers.union(highNumbers)
print(allNumbers)
commonNumbers = lowNumbers.intersection(highNumbers)
print(commonNumbers)

In this example you can see that the resulting set has all the numbers from
the low numbers set and all of the numbers from the high numbers set. Again,
the union method is commutative, so it does not matter in what order we take
the union of the sets. Below I have provided as an example how the
intersection of both sets would look like.

Dictionary Methods

Dictionaries are a collection of key value pairs, where each key refers to a
specific value. The role of the key is identical of that of the index in lists. The
key is said to ‘point’ to its respective value. When we access a specific key in
our dictionary it returns us the value to which it points.

Accessing Dictionary Values

studentRecord = {
'Graduation Year': 2020,
'Grade': 10.0,
'Name': 'John Doe',



'Country': 'Germany',
}

print(studentRecord['Name'])

The notation is exactly the same as when we retrieved values with indices
when we learned about list methods. The difference here is that dictionaries
are unordered, thus we cannot simply state that we would like to retrieve the
second element of the collection. However, we have a notion for keys, which
play the role of the index. If this was a list and we wanted to access the third
element we would say studentRecord[2], instead here we use the key ‘Name’
which maps to its respective value.

Adding new key-value pairs

Doing this is very intuitive, so much so, you might not realize you are
doing it.

studentRecord = {
'Graduation Year': 2020,
'Grade': 10.0,
'Name': 'John Doe',
'Country': 'Germany',
}

studentRecord['Honors Student'] = True
print(studentRecord['Honors Student'])

Using the same example, we decide that we want to have an additional
field in our student record called ‘Honors Student’, in order for that to happen
all we need to do is to remember the exact syntax or variable assignment and
apply it in the same way as shown in the example.

What happens is that we assign a new value to a new key. Sure enough,
when we check for the contents of the new key the data is there. Note that the
syntax for changing the value of an already existing key is exactly the same.



Data typecasting

In the opening paragraph of this chapter, we briefly discussed the
different types of variables and how Python automatically handles this for us.
That is not always to our advantage and we sometimes need the behavior of a
specific data type.

myVariable = '3.14'
print(type(myVariable))

myVariable = float(myVariable)
print(myVariable + 100)

print(type(myVariable))

In this example we have a variable of type string which we use the float()
command to cast to the type of float, which we can which allows us to make
use of the expected functionality of a float number.

myVariable = '1'
secondVariable = '2'
print(myVariable + secondVariable)

print(int(myVariable)+int(secondVariable))

In the second example you can see that the default behavior of the
addition operator (+) is to concatenate strings, so if we want to use it in the
sense of adding numbers, we have to tell that to Python explicitly by using
the int() command.

User Input

So far, we have learned a lot about different data types and their behavior
however everything is rather static and unchanging. Now we are about to
change that by learning to read user input.



myName = input("Enter your name: ")
print ("Hello,", myName)

To prompt the user to enter something all you need to do is call the input
function and optionally pass a message to the user as a parameter. The input
function is the right-hand side of an assignment operator and the input is
stored in the left-hand side.

myNumber = input("Please enter a number: ")
print(type(myNumber))
myNumber = int(myNumber)
print("This is the number squared:",myNumber**2)

A key point to remember is that the input function always returns a string
object. It is very important to cast your input to the expected variable type so
as to avoid unexpected behavior in your program.

listOfFoods = input("Enter your favorite foods separated by a space: \n").split()
print(listOfFoods)

In this example we introduce the split method– which we use on top of
the input method in order to separate the items from our input in a list. If we
were to not use the split method, we would end up with a string that contains
the entire input. You can try this for yourself by removing split.



Conditional Expressions
What is a Conditional Expression?

A conditional expression is a computer science paradigm common to all
programming languages. The idea is that we want to check if a certain
condition is present and then act upon it. It may sound somewhat abstract so
let me give you a real-world example – imagine you are about to go to school
when you see that it is raining outside.

You think to yourself – if it is raining then I will take an umbrella with
me. Is it raining or not is the condition we want to evaluate and taking the
umbrella is the action we would perform. This is what is called a block
diagram. This block diagram specifically represents the logical flow of an ‘if
statement’. The black dot at the top Is the entry point for our program and the
flow of the program is given by the direction of the arrows.

 



In this example – the program starts. We check if the condition A is true
or not. If it is true, we continue acting out B, and if it is not, we act out C. The
program ends.

In the terms of our example this would be interpreted the following way:

-          Condition: A – Is it raining?

Consequence: B – Take umbrella
Consequence: C – Continue as usual

Note that this may be a little confusing as this mysterious C is not defined
in our example, but bear with me for a few more examples and I promise we



will get to that.

What is a Logical Expression?

We will make a detour to discuss how to express the condition of our ‘if
statement’. The condition is what is called a logical expression. Logical
expressions are formulas (expressions) that evaluate to true or false. So, for
the purposes of this tutorial, you can consider everything that can be answer
by either true, or false – as a logical expression.

Logical comparison

Previously, we used the equals sign to assign the right-hand side to the
left-hand side. If, however, we use the equals sign twice in a row – that
means we want to compare if the right-hand side is equal to the left-hand
side. Note that when it comes to comparisons the left-hand side and the right-
hand side have the same purpose and therefore properties, unlike with
assignment.

A = 10
B = 20
C = 10

print(A == B)
print(A == C)

As discussed – the result of a logical expressions is always True or False,
depending if the expression is... well True or False. Another type of logical
comparison is lesser/greater than.

A = 10
B = 20
C = 10

print(A < B)
print(A < C)



Surely enough, the result is again True/False. The idea is the same as with
comparing if two values are equal. Here we compare if the left-hand side is
lesser than the right-hand side. Note that it is a strict comparison – the lhs
number has to be strictly lesser than the rhs number. The greater than
operator works in the exact same way, so I will leave it up to you to
experiment with.

If we do not want a strict comparison then we will use the lesser-than-or-
equal or greater-than-or-equal operators, which, as you probably suspect –
work in the exact same way as their strict counterparts.

A = 10
B = 20
C = 10

print(A <= B)
print(A <= C)

Logical Operator: And

Now that we discussed how to do logical comparisons, we will learn how
to build complex logical statements.

Imagine we want to know if a number is in the range of 1 and 100,
unfortunately there is no operator that can do this for us, so we will have to
do it ourselves. The logical and operator takes two logical expressions
outputs True only when all of the expressions evaluate to True. To do that we
use the keyword and

X = float(input("Enter a number: "))
answer = 1 < X and X < 100
print(answer)

When the number is between 1 and 100 both of the expressions evaluate
to True. However, if it is above 100 or below 1 one expression evaluates to



True, but the other evaluates to False which is all that ‘and’ needs to return a
False answer.

Logical Operator: Or

As with logical and – logical or is used to build complex logical
statements, by taking in two logical expressions and returning True when at
least one of the expressions evaluates to True and returns False only when
both of the expressions are false.

In this problem statement we want to find out if the multiplication of two
numbers will result in an even number, without multiplying them.

A = int(input("Enter A: "))
B = int(input("Enter B: "))

answer = A%2==0 or B%2==0

print(answer)

Okay, so this example may be a little more convoluted so let me explain.
A number is even when it is divisible by two. When multiplying two numbers
if either of them is divisible by two, then the resulting number will also be
divisible by two. That is exactly what our program statement is saying – if A
is divisible by two or if B is divisible by two then the result will be divisible
by two. All that is required for the result to be divisible by two is if either A
or B be divisible by two.

Logical Operator: Not

Logical Not is similar to and/or, that it modifies in some manner an
already logical expression. The difference is that it takes in only a single
expression and inverts it. Not True would mean False and Not False would
mean True. So, if we go with the problem where we check if a number is
between 1 and 100 and add the not operator, the result will be True only



when the number is not in the interval 1-100.

X = float(input("Enter a number: "))
answer = not(1 < X and X < 100)
print(answer)

Code Blocks

When writing an if statement we want to execute a bunch of commands if
some criteria is met. But how does Python know which statements are part of
the commands to be executed inside the if statement and which are not? That
is by using code blocks here is an example in C++.

#include <iostream>
int main(void)
{

int X = 42;
if (X == 42) {  //This is a code block

X = 1;
X = 2;
X = 3;
//...
X = 100;

} //No statements after this
//will be part of the if statement

X = 101;
return 0;
}

As you can see, we are doing multiple assignments inside the if
statements and the curly braces help the C++ compiler understand which
statements belong inside the if statements and which do not.

The same principle applies to all programming languages. In Python,
however, there are no braces to denote this, just the ‘:’ symbol and a
consistent indentation.



if False:
print("Hi")
print("Hi")
#...
print("Hi")

print("Hi")

Because the condition always evaluates to False, the insides of the if
statements will never be read or reached. However, the syntax is correct, and
the program runs seamlessly. You can try and change the indentation and see
for yourself that Python will throw you an error.

IF statements

Finally, we are going to talk about if statements.  Before I continue with
our first example, I just want to mention that mastering conditional
expressions is a necessary part for any programmer. It is an essential tool,
which forms the basis of loops and of other aspects of programming you will
encounter further down the line.
 



Now to the example – We prompt the user to input his exam score. We do
not know ahead of time anything about his score, but we want the program to
tell us in plain English if the user has passed the exam. Here is the
implementation.

myScore = int(input("Enter your exam score(1-100): "))
if myScore >= 70:

print("You have successfuly passed the course!")

You can see that the condition for passing the course is having a score
higher or equal than 70. Let us do another example. In this case the user
inputs his score and we want to check if his score is a valid score.

myScore = int(input("Input your score(1-100): "))
if 1 < myScore or myScore > 100:

print("You have entered an incorrect score!")

We will take this as an opportunity to practice conditional expressions as
well. I challenge you to modify this code so that it prints “You have entered a
correct score” only when the score is between 1 and 100.

else and elif clauses

So far, we explored what happens when the condition of our if expression
is met, the natural extension of that is to consider what to do if the condition



is false. If we consider the previous examples where we wanted to check if
the entered score is valid, we can rewrite it as follows:

myScore = int(input("Input your score(1-100): "))
if 1 <= myScore and myScore <= 100:

print("The score is valid")
else:  

print("You have entered an incorrect score!")

The reason this works and we do not need to specify a condition in front
of the else clause is because logical expressions always evaluate to either true
or false. Meaning that there are exactly two possibilities for our if statement –
for the condition to evaluate to true and for us to enter the if code-block or for
the condition to evaluate to false and for us to enter the else code-block.
There is no third option – except for the Python Executor to fail (e.g.: when
myScore is being set to a string instead of integer).

Let us remodel one of our previous examples, if we have passed the test
or not.

myScore = int(input("Enter your exam score(1-100): "))
if myScore >= 70:

print("You have successfuly passed the course!")
else:

print("You have failed the course!")

The logic is the same as in the previous example – we check if the score
is 70 or more and if it is the program issues the corresponding message,
however if it is not – we enter the else clause.
 



Let us consider another case – a combination of our previous examples.
First, we want to validate our score and then we want to check if the student
passes or not.

myScore = int(input("Input your score(1-100): "))

if 1 > myScore or myScore > 100:
print("You have entered an incorrect score!")
elif myScore >= 70:  

print("You have successfuly passed the course!")
else:

print("You have failed the course!")

The ‘elif’ clause is a concatenation of the keywords ‘else’ and ‘if’. It
would not make any difference if we were to just write another if clause
inside the else of the primary if statement. And thus you would create a
nested if-statement. You can consider this a convenience developed, because
of the wide use of these types of expressions.

I will present you with a slightly more complex example to illustrate how
nested if-statements are used. We are asked to write a survey tracking
customer satisfaction with our online product. In order to do so we ask our
clients to rate our product and if the rating is not great, we ask them are they
satisfied with the product, if they are, we thank them, if not, we ask them why
they are not satisfied.



score = int(input("Please rate our service (1-5) stars: "))
if score < 1 or score > 5:

print("You have entered an invalid score.")
elif score <=3:

feedback = input("Are you satisfied with our service? y/n\n")
if feedback == 'y':

print("Thank you for your feedback!")
elif feedback == 'n':

moreFeedback = input("What should we do to improve our service?\n")
print("Thank you for your feedback!")

else:
print("Thank you for your awesome review!")

Having this much code makes it harder to read, this is why indentation
comes in handy in order for you to orient yourself as to which code block
does this statement belong to.

Programming Loops
I gave you an early warning that complexity is going to ramp up quickly

by the time we touch programing loops and here we are. I hope by now you
are somewhat comfortable with logical statements and conditional
expressions, because they are a building block to the programming loop.

Introduction

A loop is a code segment which we would like to execute multiple times,
usually changing the state of that code segment with each execution. If we
had a number and we wanted to find out if the same number can be found in a
list with 10 numbers, we would have to write 10 if statements – now that is
not very elegant, but it is still doable. However if the list of numbers is
determined at runtime by the users input it would be an impossible task.
There is no way for the programmer to know ahead of time how many if
statements to write. It is because of these kinds of problems that loops exist.

For Loops



Iterators

Before we get into for loops, we have to cover the concept of iterators.
Any Python object that is iterable – which can return one element at a time
can have an iterator. The iterator itself is the current element that is being
returned. A lot of the Python objects implement the iterator protocol – such
as lists, tuples, strings etc.

myList = ['apple','orange','pear']
myIter = iter(myList)
print(next(myIter))
print(next(myIter))
print(next(myIter))

We have a list of items, and in order to iterate through them we first
create the iterator object and call its built-in function ‘next’ which does
exactly that – goes to the next item in the iterated object. Note that if at the
end I called ‘next’ one more time we would go outside the bounds of the
iterated object and throw a ‘StopIterration’ Exception. We will not go into
much detail as this is only a stepping stone to our actual subject – for loops.

Ordinary for loop

The problem statement is the following – we have an iterable object, for
instance say – a list. We want to do some manipulation of that list
elementwise.

This is the logical flow of our program. At the beginning we create or
fetch (e.g. from a Database) our iterable object. Then we check our condition
(have we reached the end of the object) and if not, we enter the body of the
for loop. We do that until we reach the end of the object at which point, we
continue executing the rest of the program.

 



Using the same example as with the iterators, but now with for loops.
fruit is our iterator and for each cycle through our loop we implicitly call the
‘next’ function. Unsurprisingly the result is the same. Let us do another
example.

for number in range(20):
print(number)

Here we use the very useful ‘range’ function. With it – what we are



saying in essence is – loop through all the numbers from 0 to N. This time, let
us try and compute the sum of all numbers from 1 to 100.

sum = 0
for number in range(1,101):

sum = sum + number
print(sum)

We used the variable sum to accumulate the sum of the numbers through
the loop. Notice that we initialized the variable to 0 before entering the loop.
Otherwise, Python would not know which variable we are referring to and if
we were to declare sum = 0 inside the scope of the for loop, then we would
effectively set sum to zero after each iteration. That would not work either.

We also used range() with two arguments, what is that about? Well, the
first argument is the number from which we start counting, the second is the
number up until which we will count and I will even tell you a secret – there
is a third possible argument for range. The third argument is specifying the
increment to increase our iterable (it is 1 by default).

Notice also, that in order to sum the numbers from 1 to 100 – I had to call
range (1,101) that is, because when the iterator reaches the final value – 101,
we exit the for loop.

myInput = input("Enter numbers from 0 to 100\n").split()
result = []
for x in myInput:

if float(x) <= 100 and float(x)>=0:
result.append(float(x)/100)

print(result)

In this example we take the numbers that the user inputs and of those that
are between 0-100 we add them to a new list compressed in the range of 0-1.
Notice that we need to cast the iterator, since by default anything that reads
user input is a string. Notice that the if statement is applied to each item in the
list.



even = []
odd = []
for x in range(101):

if x%2==0:
even.append(x)

else:
odd.append(x)

print(even)
print(odd)

Here we take the numbers from 0-100 and split them into two lists – those
of the even numbers, and those of the odd ones.  Take note of the use of
indentation to specify which statement belongs to which code block.

While Loops

While loops are a more general category of loops.
 



The rhomboid specifies a conditional expression. In for loops our
conditional expression was – Have we reached the last item of the iterable
object? With while loops it can be any expression.

Since it is a more general expression it means that we can imitate the
logical flow of a for expression.

x = 0
while x < 11:



print(x)
x = x + 1

Instead of using the range function, we just imitated its logic by creating
our own variable x, told Python we want to execute the statement within the
while scope until x is 101 or larger and in effect – we achieved the same
result. This also allows us to create a logical flow that cannot be done with a
for loop.

Consider we want to create a program that reads random numbers until a
specific number is read. We cannot do this with a for loop, because we just
do not know how many iterations it will take us for this number to come up,
however if we are to use a while expression it is extremely intuitive.

from random import randrange

desiredNumber = 42
numberOfCycles = 0
x = randrange(100)

while x != desiredNumber:
x = randrange(100)
numberOfCycles = numberOfCycles + 1

print("We found our number in " + str(numberOfCycles) + " iterations!")

Here we use a function from the ‘random’ library called randrange –
which generates a random number in the specified range – in our case from
0-100. We do not know ahead of time how many times the loop should be
executed which should indicate to you that a while loop is necessary.

You may have noticed however that if our desired number is outside the
range in which we generate numbers (say we wanted the number 200) we
would never exit the while loop, and this would freeze our entire program.
This is why, even though while loops are more powerful, we use them only
when necessary, because they can cause infinite loops, out of bounds



exceptions, etc. These issues are handled by design in for loops.

x = int(input("Enter a number:\n"))
print(x)
while x != 1:

if x%2 == 0:
x = x//2

else:
x = 3*x + 1

print(x, end=" ")
print(x)

This example is a famous unsolved mathematical problem called the
Collatz Conjecture, solving it will earn you 1,000,000 USD you can look up
Wikipedia for more information on the problem, simply put we enter a
number and apply the following function to it: if x is even, we divide it by
two, if x is odd, we multiply it by 3 and add 1.

Now the question that the conjecture tries to answer is – do we always
reach 1 in the end? Now this is yet to be proven hence why it’s an unsolved
problem, but for all practical purposes we can consider it to be true, since
computers have verified it does reach one, up to very large initial numbers,
however if it turns out to be false then that would mean that there is some
number which when entered will not produce 1 at the end, meaning our while
loop will be infinite, which again goes to show how dangerous while loops
can be.

meals = []
userInput = input("Enter a meal you enjoy (‘done’ to quit)\n")
while userInput != 'done':

meals.append(userInput)
userInput = input("Enter a meal you enjoy (‘done’ to quit)\n")
print(meals)

Here is an example of how you can prompt the user to input a varying
number of entries. If, however you mess up the conditional expression you
can leave the user frustratedly inputting in an infinite loop.



This infinite loop is a gracious one, it doesn’t overload your processor,
since the program stops after each iteration and waits for users input. If,
however, you wouldn’t wait for user input and execute heavy computation
tasks (like loading files, searching through big lists, etc.), the python process
would quickly overload itself and potentially freeze.

meals = []
userInput = input("Enter a meal you enjoy(done to quit)\n")
while userInput == userInput:

meals.append(userInput)
userInput = input("Enter a meal you enjoy(done to quit)\n")
print(meals)

This infinite loop is a gracious one, it doesn’t overload your processor,
since the program stops after each iteration and waits for users input. If,
however, you wouldn’t wait for user input and execute heavy computation
tasks (like loading files, searching through big lists, etc.), the python process
would quickly overload itself and potentially freeze. Try this two-liner:

while True:
print(2)



Programming Functions
Introduction

A function is a reusable block of code that encapsulates a single related
action. The purpose behind this is to organize the code into modules each of
which handles a specific part of the overall programs’ logic so it can be easily
reused, improved and managed.

 

In this introduction, we have already used various different built-in
functions, now we are finally ready to create some of our own. All functions
begin with the keyword ‘def’ followed by the function name and parentheses,
ending with a colon to indicate the code block for the function – similarly to
conditional expressions and loops.

def myFunction():
print("Hi, I'm the function you were looking for!")

for x in range(10):
myFunction()

In this simple example, we have a function that just prints out some text
and we call it just like we called the built-in functions, but this time from a
loop – which results in the function being called 10 times. Now this is not a
very sensible function since we can just type in the print statement inside the
for loop and not bother with functions at all, so let us correct this mistake and
move forward with a better example.



def compute100sum():
sum = 0
for x in range(101):

sum = sum + x
print(sum)

userIn = input("Would you like to compute the sum of the first 100 numbers? y/n\n")
if userIn == 'y':

compute100sum()
else:

userIn = input("Last chance to compute the sum, do you want to? y/n\n")
if userIn == 'y':

compute100sum()
print("You almost missed out on a great opportunity")

else:
print("I guess you will never know")

In this example as you can see, we call the function at two different points
in the program. We could still just write the code instead of the function
name at the two points where we called it, however I encourage you to try
and do it, so you can see for yourself how much messier the code gets, and
this is only a small introductory example.

Imagine a function, long hundreds of rows, being called from 10 different
places. Now replacing that function call with its’ contents would be a real
disaster. It would also be very redundant – as you would have 10 times the
exact same code inside your source code.

By outsourcing these repeating code lines into function, you
 

-          reduce the file size,
-          remove redundancy and
-          enhance the readability and maintainability of the code.

The use of functions to create modularity in your programs is not strictly
a technical skill – it is more of a design skill, since you are not changing the
overall performance of your code, but some of its meta-characteristics like
readability, reusability, scalability etc.



If this seems somewhat pointless and/or subjective, worry not, as it
becomes more and more useful the further down the coding journey you go.
As projects get more complex and your programming intuition gets stronger
you are going to start to incorporate functions intuitively into your code.

For now, when writing a program, remember to ask yourself – will these
statements always come together, and will I need them more than once in
my code? If the answer is yes, you should consider outsourcing them into a
function.

Parameters of a function

We already have some practical experience with function parameters, for
instance every time we did user inputs, we specified a message to the user
passed as a parameter to the ‘input’ function. We also passed parameters to
the ‘range’ function, passed objects to the ‘type’ function etc.

Parameters are an important feature, because they allow us to create more
responsive functions, because having parameters allows our function to
change its’ behavior based upon the parameters given. Here is the following
scenario – we want to make a quiz program so we can compete with our
friends.

def askQuestions(myDictionary, challenger):
print(challenger," do your best to answer the following questions:\n")
count = 0
for question in myDictionary:

ans = input(question)
if ans == myDictionary[question]:

count = count + 1
print("Correct answer!\n")

else:
print("Wrong answer!\n")

print(challenger," you got ",count," questions correct!\n")

myDict = {
'2 + 2 = ?\n':'4',
'3 * 3 = ?\n':'9',



'What is the capitol of Germany?\n':'Berlin',
"What's the integral of x^2 over 0 to 1?\n":'1'
}

contestants = input('Please enter the names of the contestants separated with a
space:\n').split()

for cont in contestants:
askQuestions(myDict,cont)

 

Hopefully, it becomes evident how using a function in this scenario
makes the code much more readable and easier to use/change. Obviously, we
can just copy the initialization and the loop through the contestants in the
askQuestions function to achieve the same result, however take a moment to
appreciate how intuitively the logical flow of the program is. We initialize the
questions and ask the user to enter the contestants, after which, each
contestant gets quizzed and his score displayed.

The askQuestions function does exactly what it says – it asks you the
questions. After some time, I might decide I want to add a different function
that asks selects a subset of questions from a larger set, I might decide I want
to give each player an overall score and give stronger players, harder
questions etc. Eventually the program can become quite complex, at which
point it is really useful for you as a programmer to be able to know what a
function does what without having to read all of the code inside the function.

I can see that the function takes in a question set and a challenger name
and implements all of the question-asking functionality inside, therefore if I
want to make a change to the way the questions are asked, I know I need to
modify this function, if I need to do something else, I can rely on this
function doing exactly what it says and not worry that it might have some
unforeseen impact on the code I am worrying about.

Return value of a function



We talked about what a function is, how we can alter a functions’
behavior by using parameters, it is only logical to consider the final piece of
the puzzle – that is how can functions give us feedback. You guessed it! We
do that by using the return statement.

Imagine the following scenario – our friend group is nerdy and somewhat
forgetful and thus when we get together to play DnD we often forget our dies.
Since you are an awesome programmer you decide to create a backup next
time this happens.

from random import randrange

def ThrowDie(character, numberOfSides):
if numberOfSides == 20:

return randrange(20)+1
elif numberOfSides == 6:

return randrange(6)+1
elif numberOfSides == 4:

return randrange(4)+1
else:

print("Such a die does not exist!")

FrodosDie = ThrowDie('Frodo', 6)
print('Frodo threw a ', FrodosDie)

Not only functions can encapsulate certain functionality, but they can
communicate the result of the functionality with other parts of the code. If we
decide that we want to expand our program I can just use the ThrowDie
function inside another function that calculates the amount of damage our
character is going to inflict, for example.

If you consider our previous example with the quizzing program – now
that we know what return statements do, we can opt to return the score of
each player and save it to create a leaderboard or to create some other
functionality.

Docstrings



Going back to our discussion about functions serving as a design tool –
Docstrings facilitate this further, by allowing us to document the behavior of
our functions in a way that can be itself – functionally invoked.

Allow me to explain. Obviously, it is a good idea to give descriptions of
your functions so whoever reads them or needs to edit them later can figure
what were you trying to do with this code. Docstrings are a little bit more
different than simple comments, because there is a method that allows
programs to read the documentation of certain functions – the docstring is
that documentation.

def square(x):
'''square function takes in a single argument and returns its square '''
return x ** 2

print(square.__doc__)

So docstrings are created by using triple quotes or triple double-quotes,
and can be invoked by using the ‘__doc__’ method, you might be wondering
what those fancy underscores are, but worry not, we are going to cover that in
the upcoming Object-Oriented Programming chapter.

Code is written once, but it is read and edited many times, this is why
detailed explanations of functions are a key skill that any esteemed
programmer should have. Even the creators of Python decided that it would
be for the best if their code is well documented so, you can try and call the
__doc__ method on all the built-in functions that you would like.

print(print.__doc__)

Type Checking

As we discussed in the first chapter – unlike most languages, Python is a
dynamically typed language and it does not require the programmer to



specify the type of the variable he is using. Not only that, but a variable can
change it’s type during the execution of the program, which may introduce
issues when handling the variable.

def greeter_func(name: str) -> None:
print("Hi,",name)

greeter_func("George")

The way this function works would be exactly the same if we did not use
type checking, that is to say – type checking falls in a similar category to
docstrings in that it provides us with a more readable code, which makes it
less likely that the programmer will make wrong assumptions, about some
variable or function in the code.

In the example we define a function that takes in a single parameter – our
name and just prints it out. ‘name’ is our function parameter and colon ‘str’
indicates that we are expecting ‘name’ to be of type ‘str’. Similarly, the arrow
followed by ‘None’ is the syntax for type checking the return value of our
function, so in this example what we are telling Python is that we are
expecting the function to not have a return value. Let us do another example.

def addIntegers(x: int, y: int) -> int:
return x+y

print(addIntegers("I'm feeling"," mischeavous"))

You will notice that even though I specified that ‘x’ and ‘y’ should be
integers and that the return value should be also an integer – neither of those
are actually true. Which highlights the fact that type checking serves a design
purpose.

If you want to you can violate the types, but then you will be faced with
the possibility of your code producing unforeseen results, but you wont be



prevented from doing so. In this case we are clearly stating that we would
like to add together integers, however when we pass in two strings – what
actually happens is we concatenate them.

Note that we can actually make Python ‘enforce’ typings – that is throw
an error for every violated type, thus allowing only programs that have
successfully passed type-checking to be executed, this however will be
discussed at a later chapter, when we get into the subject of Python scripts.

Recursive functions

Remember how I told you how functions are more of a design thing –
well I lied. That is mostly true, with the exception of recursive functions.

 





A recursive function is a function that calls itself. That might sound
crazy, since a deterministic function should always produce the same results,
so wouldn’t having a function call itself result in an infinite loop? Well, you
are almost correct, remember when we talked about parameters and how they
can modify the behavior of the function? Yeah, that is how we will force the
function to end.

 



Just like with while loops we run the danger of running into infinite
loops, as there is always the possibility for a function to call itself for
eternity. This is why the first thing you must consider is the base case – what
is the condition upon which a function will stop calling itself. Here is an
example – we want to calculate the factorial of a number – the product of all
positive numbers leading up to it. If you are still not sure what it is, remember
that the top skill of a programmer is – being able to find the correct answers
on the internet.



def factorial(x):
'''
Takes in a single argument x and returns
it\'s factorial,
which is the product of
all numbers from 1 to X

'''
if x == 1:

return 1
else:

return factorial(x-1)*x

x = int(input("Enter a number less than 10\n"))
print("The factorial of", x, "is",factorial(x))

Let us first think about the logical flow of the function. The entire
function is a conditional expression, therefore there are two possibilities, one
of which is to call the function again (but with a different parameter) and the
other is to return the fixed value of 1.

Notice that each time the function does a recursive call – the value of the
parameter is reduced by one. If for instance you were to call the function with
a negative initial parameter it would just keep on decreasing until a stack
overflow is reached, because the base case will never be reached.

Let us assume that that is not the case, or better yet – modify the base
case to be lesser-than-or-equal to one so there are no gaping holes in our
logic. Following this example – calling factorial(5) will result in 5 recursive
calls to the factorial function. The base case is factorial(1) and that is what
guarantees our function will end successfully. It is worth noting that even
though it looks similar to a loop where we iterate through each and every
element, there is a very important distinction. Namely – our first call to the
function returns 5*f(4) which is not a value.

What actually happens is we go down the recursion and once we reach
the base case, we start going back up substituting the function call for the
value we already know.  f(1) is substituted for 1, then f(2) is substituted for 2,
f(3) is substituted for 6, f(4) is substituted for 24 and finally, since we now



know that f(4) = 24, we can calculate that f(5) = 5*f(4) is equal to 120.

This may seem like a pointless example, because you can achieve the
same thing with a simple for loop and you are correct, however the aim of the
example is to illustrate the concept of recursion as it is considered a more
advanced topic. Later down the road when you start learning about graph and
tree structures and how to traverse them, recursion will become an
indispensable tool.



Object-Oriented Programming
Introduction

We spent most of the course using built-in objects and we even
mentioned that everything in python is an object, but we dodged the question
– what an object actually is. Now we are finally going to address it and
combine all that we learned from previous chapters in a cohesive way into
objects.

Object-Oriented Programming (OOP) is a method by which we bundle
together related properties and actions in individual objects.

Consider we want to model a car in Python, we would like to have a
name variable, a measure of how full is the gas tank and we would like to be
able to drive a car. All of these things are inter-related so, just like with
functions – it makes sense to couple them together from a design perspective.

Classes and Instances

The basis for OOP are Classes and Instances.

A class is the blueprint of an object, while the instance is the object itself.

The blueprint is the house class – as it specifies what a house is –
something having a roof, walls, a door etc. Notice how the class does not
specify exactly what is a house – it only tells us what a house has. House
instances however are specific manifestations of a house. They all conform to
the class, by having all the specified properties, but each house can be
different to the next – one can have a red roof, while the other can have a blue
roof.

class House:
def __init__(self,roofColor,wallColor,doorDesign):



self.roofColor = roofColor
self.wallColor = wallColor
self.doorDesign = doorDesign

weirdHouse = House('Blue','Gray','Classic')
fancyHouse = House('Red','Gray','Modern')

print(fancyHouse.roofColor)

Let me just mention that functions within classes are called methods/class
methods/object methods etc.

Now let us unpack this. The class is initialized by using the ‘class’
keyword following with the class name. Inside the scope of the class, the first
thing we see is this strange method with double underscores. Just like with
the __doc__ method it is something inherent for Python and is used to
initialize a class.

‘self’ is also a Python specific keyword – it is a reference to the instance
of the class that is being invoked. So, when we say self.roofColor = ‘Red’,
what we are telling Python is – I want the instance of the class being referred
to, to have the property ‘roofColor’ be set to ‘Red’. Back to the example,
what we are telling Python is, that in order to create a ‘House’ object we need
to pass in 3 parameters each of which will be a specific property of the object.

The objects in this case are ‘weirdHouse’ and ‘fancyHouse’ and both of
them have slightly different properties. We can easily check that, by using the
(dot) operator. Put in words, what it stands for is – Access this specific
variable/method of this specific object. 

Let us do another example.

class Car:
def __init__(self, brand, model, percentFuel, yearProduced):

self.brand = brand
self.model = model



self.percentFuel = percentFuel
self.yearProduced = yearProduced

myVW = Car('VW','Beetle',0.3,2010)
myMazda = Car('Mazda','323',1.0,2003)

 



Just as before, we create the class by using the class keyword, then in the
class body – we immediately define the __init__ function, so we can initialize
our object variables. Outside of the function we create two instances of the
class with those specific variables set to them.

Class Methods

So far, we created classes that hold variables, now we will extend that
courtesy to functions, except – when they are in classes, we will call them
methods.

class Car:
def __init__(self, brand, model, percentFuel, yearProduced):

self.brand = brand
self.model = model
self.percentFuel = percentFuel
self.yearProduced = yearProduced

def addFuel(self, fuelToAdd):
if fuelToAdd + self.percentFuel > 1:



print("Warning danger of petrol spill!")
self.percentFuel = 1

else:
self.percentFuel = self.percentFuel + fuelToAdd

def driveCar(self):
if self.percentFuel > 0.1:

print("Brrrrrrm..")
self.percentFuel = self.percentFuel - 0.1

else:
print("The",self.brand,self.model,"fails to start")

myVW = Car('VW','Beetle',1,2010)

myMazda = Car('Mazda','323',0,2003)

myVW.addFuel(1)

myMazda.driveCar()
myMazda.addFuel(0.5)
myMazda.driveCar()

Now we have added some functionality to our Car object. We can drive
our car and we can add fuel to it. The logic of the methods is pretty
straightforward, so I am not going to go into detail about it. However, I will
turn your attention to two facts – for every class method, the first parameter
should always be self, this tells Python that what we are dealing with
variables of the instance that called that specific method. For the same reason
we call every object variable prefixed with self.

Dunder Methods

Dunder is a contraction of Double underscore, sometimes also called
magic methods. So far, we have used the __init__ method and the __doc__
method. There is however a large quantity of Dunder methods, so for the
purposes of this introduction we are only going to look at a few.

When working with the default object types like int, string, float, etc. We
have a lot of our functionality implemented for us. For instance, it is fairly
obvious how adding two numbers works, however when we create our own



class - ‘Car’ and we decide on adding two instances of it - Volkswagen and a
Mazda it is not very clear cut what that should do – that is why it is left to the
programmer to decide on the appropriate meaning for the respective
operators, you might read about this exact same topic referred to by –
operator overloading.

class Order:
def __init__(self,cart,orderId):

self.cart = list(cart)
self.orderId = orderId

def __add__(self, other):
self.cart.append(other)
return self

myOrder = Order(['Orange','Pear','Banana'],101)
forgotToBuy = ['Pizza','Fries','Chocolates']

for item in forgotToBuy:
myOrder = myOrder + item

print(myOrder.cart)

In this example we are creating a shopping cart class. To do so we
initialize it as usual, using the __init__ method. In this case we also specify
the __add__ method which overloads the functionality of the ‘+’ operator.
Since Python has no way of knowing what we mean when we say add this to
our shopping cart object – this is the way for us to tell it. When we say add
this to my shopping cart, it makes sense to put it in the cart, so that is exactly
what we do, our shopping cart is a list and we define adding things to the cart
to be equivalent to appending the item to the list.

Notice that we end the operator overloading with the statement ‘return
self’ that is, because Python expects to receive an object of the same type
with which we initially started. As expected, the items we add in the cart end
up appended in that list.

class Order:



def __init__(self,cart,orderId):
self.cart = list(cart)
self.orderId = orderId

def __add__(self, other):
self.cart.append(other)
return self

def __getitem__(self,key):
return self.cart[key]

myOrder = Order(['Orange','Pear','Banana'],101)
forgotToBuy = ['Pizza','Fries','Chocolates']

for item in forgotToBuy:
myOrder = myOrder + item

for i in range(4):
print(myOrder[i])

Another example of a Dunder method is the __getitem__ method – which
tells us what does it mean when we try to retrieve a value by index from our
object. In this case it makes the most sense to return the I-th item from the
cart.

Class Inheritance

Another fundamental concept of OOP is inheritance. It is most intuitively
described as an is-a relationship. For example, a house is-a type of building,
in this case the building is the parent class and the house is the child class.
That is because all houses are buildings, but not all buildings are houses.

Class Inheritance (or Parent-Child Relationships) are especially common
in bigger projects and frameworks (like Django). So it’s crucial you
understand it and try the following examples on your machine.

Vehicle is a parent class, it specifies things common to all vehicles, they
use some sort of fuel, are used for driving, etc. Whilst the child classes of
vehicle are types of vehicle who share all of the properties of being a vehicle,



but have other specific properties of theirs. For instance, a Bus vehicle has
more than 10 seats and weights a lot more than cars or bikes and it requires a
special driver’s permit. Bikes on the other hand reach high top speeds, are
very fuel efficient and have only two tires.

Let us do an example to help illustrate the concept. Our parent class will
be ‘Warrior’ and our child classes would be ‘Ninja’ and ‘Knight’.

class Warrior:
def __init__(self,weapon,style,origin):

self.weapon = weapon
self.style = style
self.origin = origin

def attack(self):
print("*Generic attacking noises*")

def checkStatus(self):
print("Warrior is ready to fight")

class Ninja(Warrior):
def __init__(self):

Warrior.__init__(self,'Katana','Agile','Japan')

def attack(self):
print("The katana nimbly slashes through the air")

def specialAttack(self):
print("Shuriken throw!")

class Knight(Warrior):
def __init__(self):

Warrior.__init__(self,['Broadsword','Shield'],'Endurance','Europe')

def attack(self):
print("With a confident swing, the broadsword cuts through the air ")

def specialAttack(self):
print("Shield bash!")

myWarrior = Warrior('Bow','Long-range','Steppes')
myNinja = Ninja()
myKnight = Knight()



myKnight.checkStatus()
myKnight.specialAttack()
myKnight.attack()
print()

myNinja.checkStatus()
myNinja.attack()
myNinja.specialAttack()

print()
myWarrior.checkStatus()
myWarrior.attack()

We start out in the same way, using the class specified followed by the
class name, but when we define the child classes, we specify in parentheses
who is the parent class that they inherit. What is the use of inheriting then?
You will see that the Parent (Base) class has a function ‘checkStatus’ that is
only implemented inside of it, however due to ‘Ninja’ and ‘Warrior’ being
child classes of that class – they also can use that function.

Furthermore, ‘attack’ is implemented in the Base class, but each of the
child classes have their own implementation of that method and when we call
that method from the child classes, we get the result of their own function,
not the generic one. This is what we call function overloading, as we have the
same function multiple times. The function that will be called is the most
specific function – the one that is in the child class.

There is also no problem with having specific method to each of the child
classes, like in this example – with the ‘specialAttack’ method.



DJANGO 3

Why Django?
Web Framework

Let’s find out what a web framework is. A web framework provides a set
of tools that helps us in solving many of the common problems that occur in
web development:

-          URL routing
 

-          accessing database
 

-          manipulating data
 

-          security,
 

-          templates and much more.
 

Suppose you were to create a web application from scratch (in any
programming language). In that case, you will face the problems just
mentioned and would have to solve them yourself – a very long journey. A
framework can help solve these problems out of the box so you can focus on
getting actual work done.
 

We use a web framework (or any programming framework for that
matter) not to reinvent the wheel.

Popularity of Django
Why Django? Because it is one of the best web frameworks Python has to

offer. It has an active community and countless modules on the python
package library. It means, if you are facing a problem, someone else has
likely solved it, and you can utilize their modules to speed up your
development.



 

Figure 1 - Summary of the Django GitHub Repository
 

With 24k forks (as of the beginning of 2021), the Django Web
Framework surpasses Laravel (a PHP Web Framework with 20k forks) and
Ruby on Rails (Ruby Web Framework with 19k forks). This tells you that the
users and community behind Django are gigantic. This, in turn, tells you, as
already mentioned, that a lot of the tasks that you want to solve probably
already have been solved.
 

It is used by big corporations like Instagram, Disqus, Youtube, and many
more. Django was built with the idea of developing web applications as fast
as possible. It provides many useful features out of the box, such as a ready-
to-use authentication system, flash messages, password reset, and much
more.
 



Model-View-Controller Pattern
Model-View-Controller (MVC) is a design pattern in which we separate

the logic, data, and the UI into separate layers. It is a fancy way to say that we
have dissembled our Python Code in different files depending on what the
code does.

Model

This is the place where all of your data gets directly managed. Think of it
as a blueprint for your data – but expressed in Code. With data usually being
stored in a database.

Inside a Model you we tell your Application how to perform basic CRUD
Operations on our data. (Reminder! CRUD = Create; Read; Update; Delete).
The Model Layern then performs the final operations on the data in a
Database.

View

This part of the pattern deals with displaying content and data to the user.
HTML, CSS, Javascript & Static Assets are defined here. For example, a
productTemplate.html would belong to the View Layer.

Controller

The controller is the middleman between View and the Model. A
Controller takes data from the model (which in turn speaks to the database),
processes the data and passes it to the view.

Now the following will be slightly confusing: Django uses a design
pattern that is very similar to the MVC - Model-View-Template (MVT). In
simple terms,



 

The Model in MVT is the same as the MVC’s Model.
The View in MVT acts as the Controller (business logic) in the

application.
The Template in MVT is the same as the MVC’s Template. 

 

The following Figure compares the MVC and MVT while also
highlighting the purposes of each Layer and the flow of Data.
 

 

Environment Setup
We will be using only three resources that are free and partially open

source. Python 3.8+ being the most important one. While the Database is
secondary since you can choose another backend for your Django
Application – meaning you can choose to store your data in an SQLite file or
another Database.



 
 

Python 3.8+
PostgreSQL Database Server
pgAdmin 4 (GUI for the DB Server)

 

PostgreSQL on Windows

We will be using PostgreSQL as our database for this project. To install
PostgreSQL, head over to
https://www.enterprisedb.com/downloads/postgres-postgresql-
downloads, and download PostgreSQL for your OS. Since I’m using 64-bit
Windows, I chose the “Windows x86-64” setup for the latest version, which
at the time of writing is 13.1. 
 

Figure 2 - Download Page for PostgreSQL Server
 

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads


The setup process is pretty straightforward. You’ll be prompted to select
an installation directory. I’m installing it in a directory called
“POSTGRESQL” on my C drive.
 

In the following step, you can select different components to install. We
need the components PostgreSQL Server, pgAdmin 4, and Command Line
Tools. We don’t need the Stack builder. In the next step, leave the data
directory to default, a directory called “data.” You will be asked to set a
password for the admin user of the database. Please remember the password,
as we will need it later to connect to our database. For local development, a
“12345” will be enough.
 



Figure 3 - It's crucial to remember this password
 

Next, select a port for the database. Setting it to default “5432” is
recommended. The final step should be left to default also. If you’re on a
Mac, the steps described above are similar, and you have to leave everything
to default. Just don’t install Stack Builder that comes bundled with this setup.
Install the pgAdmin4 and everything else. Again, remember your password!

If this setup worked fine for you, skip the next section. If you run into
some troubles, give it a try with docker in the following chapter.
 



PostgreSQL on Linux (with Docker)

It’s recommended to use Docker for several reasons. One of them is that
your host machine doesn’t get trashed with different Services and Service
versions. Think of docker for PostgreSQL as virtualenv is for python
packages. If your next Django Project requires an older version of
PostgreSQL, you can easily manage that with docker.
 

Assuming that you have docker installed, we’ll briefly touch upon
PostgreSQL with Docker. First, pull the latest image.

Terminal
 

root@internetuser:/home/internetuser# docker pull postgres
 

Using default tag: latest
 
latest: Pulling from library/postgres

Now that we have pulled the latest Postgres Image let’s verify it.
 

Terminal
 

root@internetuser:/home/internetuser# docker images
 

REPOSITORY      TAG             IMAGE ID                      CREATED                       SIZE
 
postgres        latest          a6cd86e1dfce                  11 days ago                   314MB

We need to launch the Image in a Container that will open ports 5432 to
access the database from our local machine. Set the name of the Container to
whatever you want.

Terminal
 



root@internetuser:/home/internetuser# docker run --name finance_blog_db -e
POSTGRES_PASSWORD=finblogPW -d -p 5432:5432 postgres
 

13b79ceceeebef0e33dedeffe5cb83f780f7f168cb74cd3a084ab634448c2599
 

root@internetuser:/home/internetuser# docker container ls
 

CONTAINER ID    IMAGE           COMMAND                            CREATED                      
STATUS                        PORTS                              NAMES
 
13b79ceceeeb    postgres        "docker-entrypoint.s…"   7 seconds ago                 Up 6 seconds         
        0.0.0.0:5432->5432/tcp   finance_blog_db
 

The option “-e” specifies the Environment Variable
“POSTGRES_PASSWORD” inside the Container. Postgres will create an
Admin user with the username “postgres” and the supplied password. You
must use these credentials to log in to the database in PGAdmin4. 
 

Important Note: This Docker Container is saving all the data
inside itself. Which means the data will be lost when the container
fails or your host system restarts. While not ideal for production,
It’s ideal for our purpose of learning about Django, since you can
flush the database by restarting the container.
 



BASICS

Projects vs. Application
Theory

You will see the terms “project” and ”application” repeatedly in this
book, so we need to clarify the difference between them. Long story short:

-          project = project (e.g., netflix.com, youtube.com)
-          application = service (e.g., blog.netflix.com, stream.netflix.com,

billing.netflix.com, etc.)
 

Project

A project is a complete Django Application with settings, media,
templates, configurations, etc. A project is the most significant unit in terms
of file structures. You can zip a Django project folder, and it will contain
every source code and functionality that your Application has. The data
won’t be included as it resides in the Database.

Django projects must have one or more application(s) – which is the next
smaller unit in our Application representation. For example, your Web
Application is a project. It will have different functionalities (applications)
like blogposts, user authentication, comment section, portfolio management,
etc.

Application
Inside a project, you typically have a couple of applications. Each

application has one or many functionalities, and they may be reused in other
projects as well.
A Django Application is a group of



-          Views – think code with business logic
-          Models – think code that describes your data
-          Templates – think HTML Layouts that your users interact with
-          URLs – think URL-router for your Django Website

An empty Application (boilerplate) in Django has the following folder
structure. We’ll take a closer look at each file in the following chapters.

Terminal
 
$: ls application_name/
total 40
-rw-r--r--  1 a.bulezyuk  0B   __init__.py
-rw-r--r--  1 a.bulezyuk  63B  admin.py
-rw-r--r--  1 a.bulezyuk  83B  apps.py
drwxr-xr-x  3 a.bulezyuk  96B  migrations
-rw-r--r--  1 a.bulezyuk  57B  models.py
-rw-r--r--  1 a.bulezyuk  60B  tests.py
-rw-r--r--  1 a.bulezyuk  63B  views.py



Remember: You create a new project when you start working on a
completely new website. You create a new application inside a Django
project, when you are adding a new set of functionalities.

Before we take a closer look at the files in the terminal, let’s set up your
development environment and create a boilerplate Django Application on
your local machine.
 

Practice

Virtual Environment

It is preferred to use a virtual environment to isolate our Python 3 projects
to use different versions of the same package for different projects. By
default, you can only have one version of a package installed at a time in a
Python environment.

We’ll make use of virtualenv – but feel free to explore pipenv and
pyenv. Create a directory called “MyProject” and cd into it. Open your
command prompt or terminal and run the following to install virtual env:

Terminal
 

E:\MyProject> pip install virtualenv
 
E:\MyProject> virtualenv .

This command will create two directories in MyProject, Lib, and Scripts.
Any packages you install in the virtualenv will now be saved to the site-
packages directory found inside the Lib folder. Before we install anything,
let’s activate the virtual env.

Change directory into the newly created Scripts directory and type the



following command to activate the virtual environment:

Terminal
 

E:\MyProject> cd Scripts
 

E:\MyProject\Scripts> activate
 
(MyProject) E:\MyProject\Scripts>
 

If you successfully activated the virtual environment, you should see the
name of the root directory (MyProject) before the path in the command line
or terminal. Success! From now on, every python library we install will be
available only in this virtual environment and only when you successfully
activate it.

Many of us face a common issue when we open a new terminal and
forget to activate the current virtual environment. You end up with many
Errors telling you that you are missing many python packages.

Installing Django

Now cd back to the root directory “MyProject” and install Django 3. 

Terminal
 

(MyProject) E:\MyProject> pip install django
 

At the time of making this, I installed the latest Django version, which
was 3.1.3. Once you have Django installed, run the following command to
create a Django project:



Terminal
 

(MyProject) E:\MyProject> django-admin startproject financeblog

You will now have a new directory called financeblog, and it should
have the following tree directory.

 

These files are:

-          manage.py - A command-line utility through which you can interact
with the Django project. We don’t ever edit this file. As a Django
developer, you use this file daily (at least for smaller projects).

-          finanaceblog/ - This directory is the core of your Django project
with configuration files.

-          finanaceblog/__init__.py - An empty file that tells Python to treat
this file’s directory as a package.

-          finanaceblog/asgi.py - It is a configuration file for making our
project run as an ASGI application.

-          finanaceblog/wsgi.py - It is a configuration file for making our
project run as a WSGI application.

-          finanaceblog/settings.py - It includes all the settings required for
our project.

-          finanaceblog/urls.py - This file holds all of the URL patterns in the
application, and each URL pattern is mapped to a View.            



Now cd into the main “finanaceblog” project folder and run the
following command to start the project:

Terminal
 

(MyProject) E:\MyProject\financeblog>python manage.py runserver
 

Doing so will start a development server. Django comes with a
lightweight development server that automatically restarts every time it
detects any changes to the project's source code. Note that this applies only to
development. In production, we will have to set up a separate server. Running
the above command will output the following information to the command
prompt/terminal:

Terminal
 

Watching for file changes with StatReloader
Performing system checks...

System check identified no issues (0 silenced).

You have 18 unapplied migration(s). Your project may not work properly until you apply the
migrations for app(s): admin, auth, contenttypes, sessions.

Run 'python manage.py migrate' to apply them.
Django version 3.1.3, using settings 'financeblog.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CTRL-BREAK.

Now open your web browser and head over to http://127.0.0.1:8000/,
and you will see the following screen
 

http://127.0.0.1:8000/


Figure 4 - Welcome Screen of a newly installed Django Project

That’s it. With only a couple of Command-line executions and zero
codings, we have launched a website. But…with no functionalities. And…
with no Database connection. At least we now have a nice rocket.

Django Project Settings

Before moving further, let’s quickly look at the configurations in the
“settings.py” file inside the project’s “financeblog” directory. Django has
many settings in this file, but we will take a look at the most important ones:
 

1.      BASE_DIR: A constant that points to the root directory of your
project.

2.      DEBUG: This will be true by default. It tells Django that we are in
development mode, and Django will show detailed error messages.
This must be set to False when moving the website to production.
Because we don’t want to show random users our inner debug
messages for security reasons.

3.      ALLOWED_HOSTS: This is a list of domains that your Django
site can serve. It needs to be configured in production when DEBUG



is set to False.
4.      INSTALLED_APPS: This includes a list of applications that have

been enabled for this project. Simply adding applications or plugins
to a Django project does not enable them. You must include them in
this list.

5.      ROOT_URLCONF: Points to a file where your root URL patterns
are defined. We’ll cover this file later.

When deploying to production, you’ll use some sort of server. You will
need to tell your WSGI Application where the settings file is located. You
can do this by setting the environment variable
DJANGO_SETTINGS_MODULE. In our case, you would insert something
like ‘financeblog.settings’.

You can also use settings to set some global variables that every
application needs access to. In the application, you can then check the value
of a variable.

from django.conf import settings
if settings.DEBUG:

# Do something

Connecting to the Database
Configuring PostgreSQL

We now have a working Django project installed. If you noticed the
terminal message, it says that we have 18 unapplied migrations. This message
is telling us that we have some database changes that haven’t been saved yet.
By default, Django comes with an SQLite database configuration, but we will
be using PostgreSQL. Let’s configure our database first.

Open pgAdmin 4 that we previously installed. On your first time opening
the pgAdmin Client, you should see a “Set Master Password” Popup.
 



Figure 5 - Setting a master password for the pgAdmin UI Access

You have to set a master password. It will be used to access the pgAdmin
4 application – it’s not the Database password! After you set the master
password, you’ll be prompted to log in as the ‘postgres’ user when
connecting to the server. Here you have to put the password you chose at the
setup process – this is the Database password!

Now, try to access the initial Database. As you can see, we currently have
a single database called “postgres”. We have to create a new database for our
project. We will choose the same name as our Django project, i.e.,
“financeblog”. Right-click on the “Databases” and select Create > Database.
 



Figure 6 - Dropdown Menu to create a new Database in pgAdmin

Doing so will open a new window. Type “financeblog” in the field next
to “Database” and hit the save button. This setup is entirely sufficient for
learning purposes.
 



Figure 7 - UI Mask to create a new Database in pgAdmin

You will now have your database listed next to “postgres” database. It
will not be activated and will have a red cross mark on it, as you can see.
Right-click the “financeblog” database and select “connect database”.
 



Figure 8 - Empty PostgreSQL Database for Django Project

That’s it. Your database has been created and is up and running. It’s still
empty as we haven’t created any tables yet.

Configuring Django Connection

Now we have to connect our Django project to the database. By default,
Django comes with a sqlite3 database configured – a Database that is stored
as a file inside your project.



To use other databases, we have to configure the Django “settings.py”.
We will also need a python package called “psycopg2” which acts like a
driver between python and PostgreSQL.  Close the server on the command
prompt and install psycopg2 via pip.

For Ubuntu Users: First, install libpq-dev by sudo apt-get install libpq-dev

Terminal
 

(MyProject) E:\MyProject\financeblog>pip install psycopg2 

After installing the package, open the “settings.py” found inside your
“financeblog” directory. Scroll down to the DATABASES setting.

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.sqlite3',
'NAME': BASE_DIR / 'db.sqlite3',

}
}

Code 1 financeblog\financeblog\settings.py
 

Here we have to make some changes. Edit  “DATABASES” dictionary
like.

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'financeblog',
'USER': 'postgres',
'PASSWORD': '12345',
'HOST': '127.0.0.1',
'PORT': '5432',

}
}

Code 2 financeblog\financeblog\settings.py



1.      ENGINE: We are telling Django to use PostgreSQL engine. It will
use psycopg2 for this. The value is the path to the package/engine.

2.      NAME: The name of the database we created.
3.      USER: Name of the database user we will use to access the database.

It’s Postgres.
4.      PASSWORD: Password of the user postgres. I chose mine to be

12345 at install time. You have to put your password here.
5.      HOST: This tells Django the location of our database. It is localhost.
6.      PORT: This tells Django the port at which our database listens. The

default would be 5432 unless you changed it.

Django comes with a couple of built-in database backend.

Table 1: Built-in Database Engines
 

Database Django Engine Path
PostgreSQL django.db.backends.postgresql
MySQL django.db.backends.mysql
SQlite django.db.backends.sqlite3
Oracle django.db.backends.oracle

Django Database Migration

What is Migration?

Migration is a way of propagating changes made to data structure (saved
in models.py) into your database schema. Think of migration as git for the
database schema.

In Django, you declare your Data Models (models = think SQL Tables)
in models.py. In models.py, you also define their attributes (model attributes
= think Columns of a SQL Table).



Your Data Models will grow and change over time – you add a column
A, you change the maximum length of column B, and you delete column C.
Each time you perform these changes in your model.py, you have to
propagate these changes to the Database (PostgreSQL in our case) – Django
migrations are here to do this task.

 

Figure 9 - Translation of Data Model in models.py into actual DB Changes

The workflow of a Django migration is rather simple, as shown in the
Figure before:
 

1. Create Migration(s)
2. Apply Migration(s)

Create Migrations

To package up your model.py changes into migration files (migration
file = think git commit) use the makemigration command. This command
will generate the mentioned migration files. The migration files for each
Application will be saved in the “migrations” directory inside that
Application directory.



Terminal

(My Project): python manage.py makemigrations

Apply Migrations

When you create a new Django Project, the initial migrations are already
made for you. That’s why we can omit the previously mentioned
makemigrations command. We proceed with the second command in the
workflow - migrate. This command will read the previously generated
migration files, translate them into SQL and update the Database Schema.

Terminal
 

(MyProject) E:\MyProject\financeblog>python manage.py migrate
Operations to perform:

Apply all migrations: admin, auth, contenttypes, sessions
Running migrations:

Applying contenttypes.0001_initial... OK
Applying auth.0001_initial... OK
Applying admin.0001_initial... OK
Applying admin.0002_logentry_remove_auto_add... OK
Applying admin.0003_logentry_add_action_flag_choices... OK
Applying contenttypes.0002_remove_content_type_name... OK
Applying auth.0002_alter_permission_name_max_length... OK
Applying auth.0003_alter_user_email_max_length... OK
Applying auth.0004_alter_user_username_opts... OK
Applying auth.0005_alter_user_last_login_null... OK
Applying auth.0006_require_contenttypes_0002... OK
Applying auth.0007_alter_validators_add_error_messages... OK
Applying auth.0008_alter_user_username_max_length... OK
Applying auth.0009_alter_user_last_name_max_length... OK
Applying auth.0010_alter_group_name_max_length... OK
Applying auth.0011_update_proxy_permissions... OK
Applying auth.0012_alter_user_first_name_max_length... OK
Applying sessions.0001_initial... OK

Now head back to pgAdmin and open
financeblog>Schemas>public>Tables.
 



Figure 10 - Django 3 Core Tables saved in PostgreSQL Database.

You can see now that our financeblog database has 10 tables. This means
our Django database connection configuration was successful. Now rerun the
dev server. You shouldn’t see the “unapplied migrations'' message anymore –
that message was displayed at the first start of the dev server.

Terminal
 

(MyProject) E:\MyProject\financeblog>python manage.py runserver
Watching for file changes with StatReloader

Performing system checks...
System check identified no issues (0 silenced).
Django version 3.1.3, using settings 'financeblog.settings'
Starting development server at http://127.0.0.1:8000/

Quit the server with CTRL-BREAK. 



Creating a new Application
manage.py startapp

Let’s create our first Django Application. Remember, an Application in
Django is similar to service for your websites like a blog service, a billing
service or a booking service. Django provides a command utility that builds
the boilerplate structure for us. Go to the root directory of your project and
run the following command to create an app called “blog”.

Terminal
 

(MyProject) E:\MyProject\financeblog>python manage.py startapp blog

This command will bootstrap a new App inside our Django Project. The
CLI (Comman Line Interface) will create pre-populated python files inside
that folder. Pretty handy.
 
 

Figure 11 - Folder Structure of a newly created Django 3 Application



 
 

1. admin.py: You include your models in this file if you want
to show them on Django’s administration site. We’ll cover it in
the following sections. Using this file is optional.

2. apps.py: We can configure our app’s behaviour in this file.
3. models.py: We define our application’s data models here.

This file is required, but we can leave it blank if we aren’t
doing anything related to databases.

4. tests.py: Here, Django will look for tests for the current
app.

5. views.py: This is the file where you write your
business/application logic. Each view works with an HTTP
request as its parameter and returns some sort of response.

6. migrations/: This folder will include any database
migrations we create. That’s the folder we talked about in the
previous sections.

Whenever we create a new application in a Django project, we have to
explicitly tell Django that we will be using this application. To do so, open
the “settings.py” file in the “financeblog” directory and scroll down to this
section:

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
]

Code 3 financeblog\financeblog\settings.py

In this list, add our newly created application like so:



INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'blog'
]

Code 4 financeblog\financeblog\settings.py 

Designing the Blog Schema

Defining the attributes

We use models (from “Data Model”) to define schemas. In Django, we
create our models inside the “models.py” file of every application. A Django
model is a python class that inherits from “django.db.models.Model”. 

Django will create a table in the Database for each model found inside
our models file. The attributes of our model class will represent the columns
inside the database table. With the class attributes, we specify the type of data
a column will have.

Let’s define a “Blog” data model by creating a Python Class with the
name “Blog”. Open the models.py file of our blog application and add the
following code.

from django.db import models
from django.utils import timezone
from django.contrib.auth.models import User
from django.urls import reverse
from django.core.validators import MinLengthValidator

content_validator = MinLengthValidator(limit_value=300, message="Content should be at
least 300 characters long!")

class Blog(models.Model):



title = models.CharField(max_length=250)
content = models.TextField(validators=[content_validator])
date_published = models.DateTimeField(default=timezone.now)
author = models.ForeignKey(User, on_delete=models.CASCADE)

def __str__(self):
return self.title

def get_absolute_url(self):
return reverse("blog_detail", kwargs={'pk': self.pk})

Code 5 financeblog\blog\models.py

Let’s take a look at the attributes we just wrote inside the “Blog” model.
Remember, these class attributes will create columns in the PostgreSQL
Table “blog” when we make the migrations.
 

1. title: This field is for our blog title. It is a CharField that will
become a VARCHAR column inside our database.

2. content: This is the body of the blog. It is a TextField that
will become a TEXT column in our database.

3. date_published: It is a DateTime value that indicates when
the post was created. We are setting the option auto_now_add
to True, which indicates that it will automatically set the
current date whenever an object is created. 

4. author: A ForeignKey field in Django means a Many-To-
One field. It will define a many-to-one relationship between a
blog object/row and a user object/row. It means a user creates a
blog, and a user can create many blogs. In our database, the
primary key (primary key = pk; think id) of the related User
will be saved to this field. The on_delete=models.CASCADE
option means that if the associated User is deleted, we want to
delete this blog.

Note that we didn’t create this User model. Django gives us an
authentication system out of the box, which has a User model. We are
importing the User model in the third line.



The __str__ method is used to create a human-readable version of the
object. We are returning the title of the blog. Whenever we print an instance
of the blog or view it on the admin site (discussed in the following sections),
Django will display the blog title instead of something unreadable (like the
Python Object itself).

Following is an overview of other field Types that Django provides us
with. You can use any of these field types from the table by creating
instances of the mentioned classes like:

field_name = models.<field-type>(parameters)

Some of them will be used later in this book. A full list of the available
Fields was not shown since the list will grow and change with new versions.
The most crucial aspect of this section is to understand that you define the
fields in a model Class and have parameters and options.
 

Field
Class Description and Parameters

JSONField
 

New in Django 3.1. A Field for saving JSON Payloads.
Incredibly convenient when working with REST APIs.

Parameters:
-          encoder: simple JSON Class to serialize data
-          decoder: simple JSON Class to deserialize a

value fetched from DB

Example:
data = models.JSONField(null=True)

 

FileField
 

Parameters:
-          upload_to: Path in your project to the upload

directory
-          storage: A Storage object that handles the

retrieval and storage of your files



Example:
attachment_one = models.FileField(upload_to='uploads/')

 

ImageField
 

Similar to FileField but with a Validator to ensure the
File is an Image.

Example:
models.ImageField(default="default.jpg", upload_to="profile_pictures")

 

EmailField

EmailField is basically a CharField with an
EmailValidator

Example:
Email = models.EmailField(max_length=50)

 

Applying Migrations

Remember, our Blog model represents a table in the database. The
attributes of the model represent columns in the database table. Django
doesn’t automatically create the tables for our models. We have to tell
Django to do that explicitly. There are two steps involved to push our
model’s schema to reflect on the database.

The first step is creating a migration. Migration is a file that will be used
to push the model schema changes to the database. The next step is running a
command called migrate, which will push the model changes to the database
using the migrations file and keep both of them in sync. We’ve discussed this
already. So let’s do this now for our model – Blog.

This two-step of saving the schema to the database might seem confusing,
but it is helpful. Our database might change over time, i.e., adding a new
model, creating some new field, or altering an existing field. The migrations
help keep track of these changes, so our database and models are always in
sync. Let’s create the migration for the model we just created by running the
following command.



Terminal
 

(MyProject) E:\MyProject\financeblog>>python manage.py makemigrations
Migrations for 'blog':

blog\migrations\0001_initial.py
   - Create model Blog

You should see a file “0001_initial.py” inside the “migrations” folder of
the blog application. This file will be used to create the schema in our
database when we run the following command. Let’s push these changes to
the database schema by running the “migrate” command.

Terminal
 

(MyProject) E:\MyProject\financeblog>>python manage.py migrate
Operations to perform:

Apply all migrations: admin, auth, blog, contenttypes, sessions
Running migrations:

 Applying blog.0001_initial... OK

Now that we ran the “migrate” command, our database schema and our
models are in sync. Just note that every time you change your Model
attributes or create a new model, you must first run the “makemigrations”
command, which will allow Django to keep track of the changes. Afterward,
you run the “migrate” command to make sure your models and database are
in sync

Admin UI Site for the project Management

Django gives us an admin site out of the box that allows us to manage
content very quickly. We can create, update and delete model instances in the
admin site. The admin site is dynamically generated for a model by reading
the model data. We have to use it to register the model we want to be
available on our admin site. This is also an application, and Django
automatically added it to the “INSTALLED_APPS” setting in the
“settings.py” file.



Let’s register our “Blog” model with the admin site. Open the
“admin.py” file inside the “blog” application and add the following code:

from django.contrib import admin
from .models import Blog

admin.site.register(Blog)

Code 6 financeblog\blog\admin.py

We have registered our “Blog” model with the admin site, and it should
now be available on the admin site – more on that in the next sections. When
your application grows in size, meaning you create many models, it makes
sense to pass the model in a list to admin.site.register(). You can go a step
further and create a method that will extract all models from models.py inside
the application and pass them to …register().
 

Creating a superuser

To access the admin site, we need a superuser with admin privileges.
Create a superuser by running the “createsuperuser” command like so:

Terminal
 

(MyProject) E:\MyProject\financeblog>python manage.py createsuperuser
Username (leave blank to use 'Andrey'): root

Email address: root@gmail.com
Password:
Password (again):

Superuser created successfully.

Enter your username, email, and password to create the superuser. Now
let’s access the admin site.

Django Admin Site



Run the development server and go to http://localhost:8000/admin:
 

Figure 12 - Blank Django Admin Login Interface

Use the username and password of the user you created earlier to login.
You should now see the home page of the Admin site.
 

Figure 13 - Home Page of a logged in Admin in the Admin UI

You can see models called “Groups'' and “Users”. They are shipped with
Django and part of the Django authentication application

http://localhost:8000/admin


(django.contrib.auth).Django registers these two automatically with the
admin site. You can view existing users by clicking on “Users”, add new
users or delete existing users, though currently, only one user exists. We will
not be concerned with the “Groups” model in this book. Groups are
generally used to assign permissions or labels to individual users.

Below these two models, we can see our Blog model. It shows up here
because we registered it earlier with the admin site. Let’s create a new blog
entry. Click the “Add” button next to Blogs. You will see that the Django
admin has automatically generated a form for this model:
 

Figure 14 - An input Form for every added and migrated Model

This is great as it gives us a quick and user-friendly way to create, update
or delete model instances. If you have ever tried to create an Admin UI (and
forms) for your projects, you know how much work and frustration Django
liberates you from. Fill the form and save the blog. You should be redirected
to a listing page with a success message.
 



Figure 15 - Overview of Model Entries (table rows) in Admin UI

Now experiment with the admin site by adding a few more blogs or users,
updating some blogs, or deleting a few of them. 
 

Djangos ORM - Django Shell
Theory

Django gives us a database-abstraction API that lets us create, update,
delete and retrieve objects – the so-called CRUD Operations. This API will
take care of writing SQL Queries under the hood. At the same time, we can
easily use function calls to perform actions on the database.

This allows every python developer to perform complex CRUD Tasks on
a SQL Database without having any experience with SQL.

Practice



Let’s take a quick look at the Django Shell. You can think of this shell as
a stripped-down version of your Django website. It boots into your Django
Project, loads your settings and apps. From there on, you can manage your
Project, load models, manipulate the Database, and so on. We’ll focus on
CRUD Operations for models. Close the server and write the command
“manage.py shell” to enter the python shell in the context of our project:

Terminal
 

(MyProject) E:\MyProject\financeblog>python manage.py shell

Creating objects

Now enter the following code:

from blog.models import Blog
from django.contrib.auth.models import User
user = User.objects.get(username="root")
blog = Blog(title="Test Blog", content="A test blog...", author=user)
blog.save()

Let’s take a look at the code in detail. At the top, we are importing our
Blog model and Django’s default User model.

user = User.objects.get(username="root")

In this line, we are using the “get” method, which returns a single object
from the database. If no objects are found matching the query, then it will
raise a DoesNotExist Exception. Also, note that the get method expects a
single object from the database. If your query returns more than one object, it
will raise a MultipleObjectsReturned Exception.

blog = Blog(title="Test Blog", content="A test blog...", author=user)



In this line, we are creating a new Blog instance by passing named values
in the model. We are not passing in the “date_published” value as it gets
added automatically upon the creation of the object – re-read the
auto_add_now=True part. Note that this blog instance has only been created
in memory – if you check the Database at this stage, you won’t see the new
entry.

blog.save()

This is the line that will actually save the blog instance to our database. It
used the INSERT SQL statement to save a new record. To directly save to the
database, we can use the create method:

Blog.objects.create(title="Hello world", content="Some blog content...", author=user)

Updating objects

Let’s change the Blog object we created that is stored in our blog
variable:

blog.title = "Updated blog title"
blog.save()

We changed the title of the blog and called the save method. This time it
checks whether that record already exists and changes only a part of it. It will
perform UPDATE.
 

Retrieving objects

Django returns objects from a database in the form of QuerySet Object. A
QuerySet is a collection of objects returned from a database. It offers many
filters to limit the results further.

A QuerySet Object is the equivalent of the “SELECT'' SQL



statement.
Whereas the filters-methods are the limiting clauses such as

WHERE, ORDER BY, etc..

We can get a QuerySet by calling a filter method on our model’s
Manager, “objects''. To retrieve all objects, we can use the “all” method.

Blog.objects.all()
➢        <QuerySet [<Blog: First Blog>, <Blog: Test Blog>, <Blog: Hello world>]>

We can retrieve objects based on a filter. Let’s retrieve blogs that start
with “Test”.

Blog.objects.filter(title__startswith="Test")
➢       <QuerySet [<Blog: Test Blog>]>

Let’s take a look at the commonly used QuerySet filters before moving to
the next section. Be aware that the following table is just a subset of all
filters. A more complex filter should be researched in the official
documentation based on your current Django Installation. The following can
be read and executing with the following simple syntax:

from .models import model_name
obj_or_queryset = model_name.obejcts.<method_name_from_the_table>()

Table 2: QuerySet Methods and Filters
 

Method name Description Returns

filter() Returns matching Objects based on
Field Lookups. QuerySet

order_by()
Returns matching Objects ordered

based on Models Meta-Class or provided
field name as parameter.

QuerySet



all() Basically, it returns a copy of the
QuerySet you invocating the method on. QuerySet

get() Returns a single Object based on
given Field Lookups and parameters.

Model
Instance

create() Creates and returns the newly created
Object.

Model
Instance

get_or_create()

Tries to fetch a single object based on
given Field Lookups and Parameters. If
None were found, the Object would be
created filled with data that you passed as
search criteria.

Model
Instance

count()
Counts all the objects based on the

searching criteria and returns an integer.
Similar to “COUNT()” SQL Statement.

Model
Instance

latest()
Returns the latest Object from a

QuerySet, based on fields provided as
parameters.

Model
Instance

first()
Returns the first Object from a

QuerySet. The equivalent of fetching the
0th index from a list.

Model
Instance

last()
Returns the last Object from a

QuerySet. The equivalent of fetching the
n-1th index from a list.

Model
Instance

delete() Deletes one Object or all Objects
from a QuerySet.

# deleted
Obj.

We have learned how to interact with the database and manage our data,
and now it is time to move on to creating views for our Blog application.

Creating Views
Theory



Django View is a class or a method that receives a web request as an
argument and returns a web response. We can return HTML documents,
JSON Payloads (think REST API), Images, XML etc. The Business Logic of
Django App will reside in the view layer.

You can find many discussions online about where business logic code
goes in Django. There many valid suggestions – like outsourcing them in so-
called Services – but we will stick with the simplest solution.

Generally, you are free to name your views as you wish and assign them
tasks that you deem necessary. But in Django, as is the case in many other
web frameworks, you have a handful of Views considered “Standard,” which
will cover most of your use cases.



Table 3: Django (Generic) View Types
 

View Name
(=Django Class) Description

DetailView

Used to display detailed data of a model
e.g.,

-          a User Profile
-          single Transaction
-          single Post

CreateView

Displays a Form with necessary input fields to
create a new model

e.g.,
-          User Registration
-          sending Money
-          publishing a Post

UpdateView

Displays a pre-filled Form with necessary input
fields to update an existing model

e.g.,
-          Update User Profile
-          Update or Cancel a Transaction
-          edit a Post

DeleteView Used to handle model entry deletions.

ListView

Used to display all or a subset of Entries of (a)
model(s).

e.g.,
-          List a Users’ friends
-          List of transaction in past 7 days
-          List of Posts this month

Practice

We will now create a list view and a detailed view. One view will display
a list of all the blogs in our database, and the other will display a detailed
page of one specific blog.



We will first write the logic of these two views, and then we will route
them to URL patterns, so Django knows what URL is bound to what view.
Lastly, we will create an HTML template that will be returned by our view
(function) along with an HTTP response to show the data. Open the
“views.py” file inside your blog application and write the following code.

from django.shortcuts import render, get_object_or_404
from .models import Blog

def list_blogs(request):
blogs = Blog.objects.all()
return render(request, "blog/list.html", {"blogs": blogs})

Code 7 - financeblog/blog/views.py

We’ve just created our first view. Our list_blogs view takes the request
as a parameter. Note that all views require a request. Afterwards, we are
fetching all the blogs and storing them in a variable called blogs. Lastly, we
are returning the render function. The render function takes three
parameters: request, a path to our HTML template, and the content
dictionary.

Content Dictionary

The third parameter to the render function is a dictionary of variables we
want to use in our template. In this case, we are passing our blogs under the
essential blogs, and looking back at our Table with QuerySet filters, we see
that blogs should now return a QuerySet (=think python list).

The render method is a shortcut function to return an HttpResponse, and
some data and a template – the type of the returned document is HTML in
this case.

Request Object

A request is an object that Django builds for you – it’s an HttpRequest



Class instance. Your job is to extract the data from the object needed for your
business logic – your view method. Below you’ll find a couple of essential
and often used attributes and methods of the HttpRequest object.

Table 4: Important HttpRequest Attributes and Methods
 

Attributes or
Method Description

HttpRequest.scheme Returns a string with either ‘http’ or ‘https’
HttpReuqest.body Returns the raw HTTP Body.

HttpRequest.method Returns Request Method like ‘GET’ or
‘POST’

HttpRequest.POST Returns HTTP POST parameters
HttpRequest.GET Returns HTTP GET parameters

Creating Blog Detail View

Let’s add a detail view down below the list_blogs view:

def detail_blog(request, pk):
blog = get_object_or_404(Blog, pk=pk)
return render(request, "blog/detail.html", {"blog": blog})

Code 8 - financeblog/blog/views.py

-          This view takes pk along with the required request parameter. The
pk here means primary key, and it will be used to retrieve a single
Blog record from the database.

-          The function called get_object_or_404, here we pass a model and a
querying parameter to fetch a single record. If the function finds the
record, it will return a QuerySet. Otherwise, it will display a 404-
error page.

-          Next, we are returning the render method with a path to our detail



template and passing the blog instance to the template. Let’s hook
our views with the URL patterns.

URL patterns
Theory

When a user requests a page on our Django website through a URL,
Django will go through a list of URL patterns in the project and stop at the
one that matches the user's requested URL.

The URL patterns are concatenated from all applications inside a project,
with one urls.py file being the central one –
project_name/project_name/urls.py . In our case, this central urls.py file is
located in financeblog/financeblog/urls.py. As we will see shortly, in this
main file, we’ll point to different locations – views and urls.py files of other
applications - in our Web App.

The URL pattern will have a View associated with it. Django will run that
View and if any parameters are sent with the request, pass them to the View.
The response returned by the View will be sent back to the User.

Practice

Create a “urls.py” file inside the blog application and the following code
to create URL patterns for our two views.

from django.urls import path
from . import views

urlpatterns = [
path("", views.list_blogs, name="blog_list"),
path("blog/<int:pk>", views.detail_blog, name="blogs_detail"),
]

Code 9 - financeblog/blog/urls.py



We use the “path” function to create a URL pattern. The first argument is
the URL path, and the second is the view we want to associate with this URL
path pattern and a named argument called name.

Our first URL pattern is empty and takes no parameters, and is linked to
our list_blogs view – the one method we defined in the last section. We call
it “blog_list” and we can use this name inside our project to refer to this URL
pattern.

Our second URL path takes an argument – only now our URL path truly
becomes a pattern. After the keyword “blog/”, we pass it a value of type int,
meaning that it must be a number, and we have given it the name of pk. The
variable pk will be available to us inside the View under the name of pk.
That’s why we passed a parameter of “pk” to our blog_detail view method.

We have to include the URL patterns of our blog application inside our
project’s main “urls.py” file. Open the “urls.py” inside the “financeblog”
directory and put the following:

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path('admin/', admin.site.urls),
path('', include('blog.urls'))
]

Code 10 - financeblog/financeblog/urls.py

We tell Django to include the URL patterns defined inside the blog
application under the “/” path. Since we want to display blogs on our home
page where the URL will be localhost:8000/, we don’t want to put our blog's
URL patterns under the “blog/” path as the “admin/” has done. That is why
we are leaving it empty here.



Template Views
Theory

A Template in Django is a file with an ending of *.html. This Document
is a merger of static HTML Content and dynamic Content supplied by
views.py. In views.py, we pass dynamic data to the template (e.g., User data,
Pictures, Menu items, etc.). The passed dynamic data will be a Python
dictionary.

Django will look for templates inside the templates/ directory of each of
our applications. Note that Django doesn’t differentiate between template
directories of different applications. It treats them as if they were all in a
single directory.

That is why, for isolation, we create another directory by the name of the
application inside the application_name/templates/ directory and store our
template files inside that directory. So, we’ll be placing our templates into
blog/templates/blog/. It’s slightly confusing, but we will get there!

Using Django templates, we can do a lot more than just display static
HTML files. We can perform

-          loops inside our templates,
-          conditionals (if, else-if, else),
-          inherit from other templates
-          and much more.

Django provides a straightforward syntax for the templating engine. We
can create and use

-          template tags ≈≈ {% tag_name %}
-          template variables that look like ≈≈ {{ variable }}
-          template filters that we can call on our variables ≈≈ {{ variable|filter



}}

Create a templates directory inside your blog application. Now create a
folder called blog inside the templates directory – as explained previously.
Lastly, create three HTML files called base.html (note that .html is an
extension, not part of the name), list.html, and detail.html. You should have
a directory structure inside the blog application like the following figure.
 

Figure 16 - Templates folder structure for the App 'Blog'

Practice

Main Parent Template

The base.html will hold content that all of our pages/templates will share

-          HTML <head> tag,
-          CSS,
-          JavaScript CDNs
-          Other files
-          navigation bar
-          etc.

This is the foundation template from which all of our other models will be
extracted. Add the following to the base.html. Anything that your Web App
needs on a global level (say font or icon files) is the place for it.



{% load static %}
<!doctype html>
<html lang="en">

<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link rel="stylesheet"

href="https://cdn.jsdelivr.net/npm/bootstrap@4.5.3/dist/css/bootstrap.min.css"
integrity="sha384-
TX8t27EcRE3e/ihU7zmQxVncDAy5uIKz4rEkgIXeMed4M0jlfIDPvg6uqKI2xXr2"
crossorigin="anonymous">

<link rel="preconnect" href="https://fonts.gstatic.com">
<link href="https://fonts.googleapis.com/css2?

family=Poppins:wght@400;600;700&display=swap" rel="stylesheet">
<link rel="stylesheet" type="text/css" href="{% static 'blog/main.css' %}">
<title>My Finance Blog</title>

</head>
<body class="bg-light">

<header>
<nav class="navbar navbar-expand-lg navbar-dark bg-dark">

<div class="container">
<a class="navbar-brand mb-0 h1" href="{% url 'blog_list' %}">My Financial

Blog</a>
</div>

</nav>
</header>
{% block content %}
{% endblock content %}

<script src="https://code.jquery.com/jquery-3.5.1.min.js" integrity="sha256-
9/aliU8dGd2tb6OSsuzixeV4y/faTqgFtohetphbbj0=" crossorigin="anonymous"></script>

<script src="https://cdn.jsdelivr.net/npm/bootstrap@4.5.3/dist/js/bootstrap.bundle.min.js"
integrity="sha384-
ho+j7jyWK8fNQe+A12Hb8AhRq26LrZ/JpcUGGOn+Y7RsweNrtN/tE3MoK7ZeZDyx"
crossorigin="anonymous"></script>

<script src="https://cdn.jsdelivr.net/npm/js-cookie@rc/dist/js.cookie.min.js"></script>

</body>
</html>

Code 11 - financeblog/blog/templates/blog/base.html

This is just a simple bootstrap HTML document. We’ve included the
bootstrap CSS, js, jquery, and a js-cookie library via CDN.  To load local
static files such as CSS and js files, we have to call the “{% load static %}”
template tag at the top of our document, which is what we have done here.
This gives us access to the “{% static “path_to_file” %}” template tag. Find
the link tag in the head tag:



<link rel="stylesheet" type="text/css" href="{% static 'blog/main.css' %}">

You can see it is using the static template tag and looking for a main.css
file. Let’s add the main.css file. Create the following directory structure
inside the blog application.

 

Figure 17 - Folder Structure for Static Django Assets

As you can see, we apply the same structure to static/ directories as we
did to templates/ directories. So, what is happening here is following: with
the ‘static’ template tag, we tell Django to replace the

{% static 'blog/main.css' %}

Part with a working path pointing to our Django static folder in the blog
application – more specifically, the static asset main.css. I assume you hate
CSS – I’ve heard some backend developers do – so we will skip this part.
Please copy the main.css from the GitHub repo into the previously mentioned
location in your App. Otherwise, you may go through the main.css yourself
or create your styles.

Terminal

wget https://raw.githubusercontent.com/AndreyBulezyuk/Django-3-
Book/master/blog/static/blog/main.css



 

The navbar logo links to our list_blog view’s URL using the {% url
‘blog_list’ %} template tag.

Template blocks and inheritance

After the header tag in the body of the base.html, you should’ve noticed
the {% block %} tag. We can name our block template tags, and we are
calling it “content”, so it becomes {% block content %}.

This template tag will create a block in our document. Templates that
inherit from this base.html template can fill this block with data, tags, or
comments. Note that the block template tag has a closing tag called “{%
endblock %}”. Let’s edit the template of our list_blog view, which is located
at templates>blog>list.html inside the blog application.

{% extends "blog/base.html" %}

{% block content %}

<div class="landing bg-dark">
<div class="container">

<div class="row align-items-center justify-content-center">
<div class="col-sm-12 col-lg-6 text-center">

<h1 class="text-white font-weight-bold display-3 mb-3">Finance blogs to help
you succeed.</h1>

</div>
</div>

</div>
</div>

<div class="container p-5 rounded ">
{% for blog in blogs %}

<div class="row blog mb-5">
<div class="col-lg-2 col-sm-12 text-center">

<a class="mugshot-container mb-1" href="#">
<span>{{blog.author.username}}</span>

</a>
<small class="text-muted">{{blog.date_published|date:"d/m/Y h:i a"}}

</small>



</div>
<div class="col-lg-10 col-sm-12">

<div class="blog-information">
<h1 class="font-weight-bold mb-3">{{blog.title}}</h1>
<p>{{blog.content|truncatewords:30}}</p>
<a href="{% url 'blogs_detail' blog.pk %}" class="font-weight-bold mb-3

d-inline-block">
Read More

</a>
</div>

</div>
</div>

{% endfor %}
</div>
{% endblock content %}

Code 12 financeblog\blog\templates\blog\list.html

At the top, we are using the extends template tag to tell Django that this
template inherits from the base.html template. Next, we are adding content to
the content block we created in base.html.

We are looping over the blogs list we passed to this template through the
view and display the blog title, author of the blog, published date of the blog,
and body of the blog. The following picture visualizes the way list.html and
base.html will work together.

 



Figure 18 - Template extends tag, similar to Parent-Child Relationship

We are also adding a link to the detail_blog view using the url template
tag i.e. “{% url ‘blogs_detail’ blog.pk %}”. We are passing it the pk (primary
key) of the blog object as required in our blog_detail view.

By default, Django date fields display time and date, but we wanted to
display only the date and in a specific format. For that, we used the date
template filter on the date_published field.

We have also used a template filter on the content of the body,
“{{blog.content|truncatewords:30}}”,  called truncatewords. This template
filter limits the word count of our blogs’ content and will only display up to



30 words. If the user wants to read more, they can visit the detail page of that
specific blog.
 

So, let’s edit the template of our detail_blog view which is located at
templates>blog>detail.html inside the blog application:

{% extends "blog/base.html" %}
{% block content %}
<div class="container blog bg-light p-5 mt-5 rounded ">

<div class="row">
<div class="col-3 text-center">

<a class="mugshot-container mb-1" href="#">
<span>{{blog.author.username}}</span>

</a>
<small class="text-muted">{{blog.publish_date|date:"d/m/Y h:i a"}}</small>

</div>
<div class="col-9 question-information pb-1">

<h1 class="blog-card-title mb-3 font-weight-bold">{{blog.title}}</h1>
</div>

</div>
<div class="row">

<div class="col-12 mt-5">
<p class="line-height text-justify"> {{blog.content}}</p>

</div>
</div>
</div>
{% endblock content %}

Code 13 financeblog\blog\templates\blog\detail.html

We are doing the same thing as we have done with the list.html template.
We are extending from the base.html template. We are then opening the
content block and filling it with content. Unlike the list template, which
receives a list of Blog objects, the detail template receives only a single
Blog object. That is the reason we are not performing any loops here.

Results

Make sure your development server is running and open
http://localhost:8000:

http://localhost:8000/


 

Figure 19 - List Template Top Page
 

Figure 20 - List Template Blog Display



On the homepage of our website, you can now see a heading and a list of
blogs. This is the list_blog view. We show the date a blog was created, who
created the blog, the blog's title, a short description of the blog, and a “read
more” button that will lead you to the detail_blog view of a specific blog.

Note the URL of a blog's detail page, and it has a number after the
“blog/”. This number here is the pk of a blog instance and will be passed to
our view, and our view will then use it to find a blog object instance – see
code on page 123. If found, it will return to this page. Otherwise, we will be
shown a 404 error. Click the “read more” button of any of the blogs, and it
will lead you to that blog’s specific detail page.
 

Figure 21 - Detail Template

Albeit very minimal, we now have a working blogging site where users
can read blogs. The homepage lists the available blogs, and each blog has a
detail page.

Let’s recap what we have just done with the following simplified (and



intentionally incomplete) representation. The flow starts with the request
being routed via urls.py to the right view. In views.py the right view is being
invoked. The business logic is applied (like CRUD Operations on Models),
and the template is rendered.
 

Figure 22 - Simplified Representation of the Request Flow

So, in essence, whenever you need to add a browsable page to your
Django Project, this is roughly the process you have to go through. Our
website is far from finished. Let’s expand our application’s functionalities in
the next chapter.
 



APPLICATION
We did pretty well so far. This chapter will create a new application,

repeating some steps from the previous Chapter while injecting new ones.
For example, we will learn how to use new Field Types in models, create
Forms and use a Django feature called “Signals.”

Right now, our blog application has a minimal set of functionalities – not
useful for anything. Only a superuser can create blogs through the admin site.
We want regular users to post blogs, but we don’t want regular users to
access our admin site.

We have no register, login, or logout functionalities on our site yet. In this
chapter, we will create all the components that these functionalities consist
of. With that in place, new users can register on our website.

New Profiles Application

Theory

We want to give our users the ability to have a profile picture and post a
short description about themselves. If you remember, Django gives us a User
model out of the box, but it doesn’t have an image or a description field. We
can either extend the existing User model or create another model called
Profile and give it a One-to-One relationship with the User model.

We will go with the latter approach as it is the preferred way. This
approach is preferred because we won’t have to re-code many built-in
functionalities of the built-in User model (e.g., login, register, etc.). Also, this
will prevent unintended consequences down the road, e.g., when applying a
Django update that alters the User model in some way. You’ll see a simple
Class Diagram displaying the relationship between our two models in the
below figure.

 



Figure 23 - One-to-One Relationship between Django-supplied User and manually-created
Profile model

Practice

Creating an Application

Let’s create an application called profiles. Close the server, go to the root
directory of the project, and type the following command.

Terminal
 
(MyProject) E:\MyProject\financeblog>python manage.py startapp profiles

Running this command should create a “profiles” application for us. We
will put every User related feature in this application. Let’s register this
application within our current project. Open the settings.py file of the project
inside financeblog/ and add the name of our application to the
INSTALLED_APPS list.
 

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',



'blog',
'profiles'
]

Code 14 financeblog\financeblog\settings.py

On server restart, Django will be loading the source code profiles
application. Then we create a couple of new entries and, before that, a
migration.

Creating Model

As stated before, Django’s built-in User model does not provide an image
or a description field. That’s why we will create a new model called Profile
and give it an image and a description field. We will then give it a one-to-one
relationship with the User model to only have one Profile and vice versa.

This Profile Model is the place for further fields for your App Users. One
could imagine fields like ‘LinkedIn Profile’, ‘Instagram Page’, ‘Phone
Number’, ‘Years of Experience in Django’ to be at the right place in Profile.
Your Users Payment Methods, on the other hand, would be best outsourced
into another model.

Add the following code to the models.py file of the newly created
profiles application.

from django.db import models
from django.contrib.auth.models import User

class Profile(models.Model):
user = models.OneToOneField(User, on_delete=models.CASCADE)
image = models.ImageField(default="default.jpg", upload_to="profile_pictures")
description = models.CharField(max_length=500, blank=True)

def __str__(self):
return f'{self.user.username}\'s Profile...'



Code 15 financeblog\profiles\models.py

Let’s go over the fields:

-          user: We are defining a One-to-One Relationship with the User
model, i.e., one user can only have one profile and vice versa.

-          description: It is a simple CharField. We are setting blank to True
because we don’t want to force our users to write a description about
themselves if they don’t want to. One can think of setting the default
parameter to something like “This profile has no description yet”.

-          image: We are defining an ImageField type. Django doesn’t store
images as binary data in the database. It stores them on the file
system and saves a path in the database field. We are specifying a
default Image; in case the user doesn’t upload one. In upload_to, we
set a path where to store the Images: profile_pictures/. By default,
Django will store user uploaded files defined by the MEDIA_URL
and MEDIA_ROOT settings (more in the next Section).

You can also do some minor database optimizations by omitting the
default parameter for specific fields.

Take description as an example. You could provide a default value that is
about 1KB in size. If you have 100.000 Entries with a default value, you are
adding 100 MB to your DB. In this scenario, it’s advised to create a model
method (just like we created __str__()) to return the necessary default
information if the field is empty.
 

Applying Model to Database

Note: Our environment needs the package “Pillow” to work with Images
in Django. Otherwise, you might get an Error while creating migrations in the
next Paragraph. The Exception will look like this:



Terminal
 

SystemCheckError: System check identified some issues:
ERRORS:
profiles.Profile.image: (fields.E210) Cannot use ImageField because Pillow is not installed.

HINT: Get Pillow at https://pypi.org/project/Pillow/ or run command "python -m pip install Pillow".
(MyProject) E:\MyProject\financeblog>pip install Pillow

Remember the steps from page 99 and try to migrate this new app on
your own before proceeding with the following code. Let’s create the
migrations for this model and push these schema changes to our database.

Terminal
 

(MyProject) E:\MyProject\financeblog>python manage.py makemigrations
Migrations for 'profiles':

profiles\migrations\0001_initial.py
- Create model Profile 

(MyProject) E:\MyProject\financeblog>python manage.py migrate
Operations to perform:

Apply all migrations: admin, auth, blog, contenttypes, profiles, sessions
Running migrations:

Applying profiles.0001_initial... OK

Configuring Media Server Paths

We need to configure the MEDIA_URL and MEDIA_ROOT settings to
specify where our images are saved and under what path we have them
available. Open the settings.py and add the following code:
 

import os
MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
MEDIA_URL = '/media/'

Code 16 financeblog\financeblog\settings.py
 

We are importing the os module and using it to set the MEDIA_ROOT
to a directory called media in our project's root directory. Next, we define the
MEDIA_URL, so any user uploaded files will become available to us under
the path “media/” after the domain of the site.



 

Configuring Media URLs

To serve user uploaded files during development, we have to add the
following change to the urls.py file of the project inside the financeblog
directory:
 

from django.contrib import admin
from django.urls import path, include
from django.conf import settings
from django.conf.urls.static import static
urlpatterns = [

path('admin/', admin.site.urls),
path('', include('blog.urls'))
]
urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

Code 17 financeblog\financeblog\urls.py
 

Here we are building the path for our files, and we are making them
available under the path “/media/” which we have given to the
MEDIA_URL setting. Do note that this is not the preferred way of serving
files in production.

We have configured our Django project’s settings to upload profile
pictures, but we haven’t created the directories for it. In the root directory of
the project, create a directory called media. Inside it, put a jpg image by the
name “default.jpg” and create a folder called profile_pictures.
 

The default.jpg image is for when the user doesn’t upload an image
themselves. The profile_pictures is the directory where the user-uploaded
images will actually be saved. You should now have the following directory
structure for the media directory inside the root directory of the project:

 



Testing the Profile Model

Register the Profile Model

Open the admin.py file inside the profiles application and add the
following code to register our Profile model to the admin site:
 

from django.contrib import admin
from .models import Profile
admin.site.register(Profile)

Code 18 financeblog\profiles\admin.py 

Make sure the development server is running and head over to
http://localhost:8000/admin and log in. Click on the profiles link, and it
should lead you to the following page. Why would you not want to include a
model/entity into the admin site UI? Because some models are supposed to
be background only (e.g. Logging, Backup Tracking, ...).
 

http://localhost:8000/admin


Figure 24 Admin side UI

As you can see, there aren’t any Profile objects yet. We only have a
single user in our database right now, i.e., the superuser root. 
 

Creating and associating a new Profile

Let’s create the root’s profile. Click the “Add Profile’:
 



Figure 25 Adding a profile
 

I’ve purposefully left the image field blank. Click save, and it should lead
you to the following page:
 



Figure 26 List profile view
 

Interestingly Django makes an effort to adjust the name of the object so
that the one-to-one relationship between user and profile becomes apparent.
I’m talking about the “root’s Profile”. Let’s click on the Profile we just
created, and it should show you the following.
 

Figure 27 root profile view
 

As you can see, since we didn’t explicitly set an image for the profile, it
chose a default image as we specified in our models.py file. Clicking on the
image will show you the image.
 



Figure 28 Uploaded Image view in web
 

Note the URL of the image is pointing to the “media/” path. Everything
works perfectly. We can now create a view, templates and display this stuff
on the main website, but we have to take care of a minor problem first.
 

Problem with the Profile Model
Discovering the (foreseeable) Issue

Let’s add a new user through the admin site. Open the admin site and
click the add link next to User:
 



Figure 29 Adding link
 

After you have added the user successfully, go to the Profiles section in
the admin site:
 



Figure 30 Profile Section in Admin Site
 

The profile for our newly created user was not created automatically.
Remember, the Profile is a separate model and only shares a one-to-one
relationship with the User model. This one-to-one relationship is set to one
column/attribute only. This does not force a new profile entry to be created in
a database when a new User is being created. 
 

Solution

We want a new profile to be created automatically when a user is created
and associate it with the new user. Luckily, there’s something called Django
Signals which can help us in this situation. 
 

Django Signals
Emit and Listen - Send and Receive 

Using Django signals, we can allow applications to be notified when an
action occurs. In simple terms, we will create a receiver in our application
whose job is to listen for signals. Django will emit signals whenever
something is done in our application. We can tell our receiver function what
signal it should listen to. 
 

For example, using the post_save signal and a receiver, we can be
notified whenever the User model is created. We can automate the process of
creating a Profile for that newly created User.

Automating the creation of Profile

Open the models.py file of your profiles application and make the
following changes, so your models.py file looks like this:
 



from django.db import models
from django.contrib.auth.models import User
#NEW CODE BELOW
from django.db.models.signals import post_save
from django.dispatch import receiver
#NEW CODE ABOVE

class Profile(models.Model):
user = models.OneToOneField(User, on_delete=models.CASCADE)
image = models.ImageField(default="default.jpg", upload_to="profile_pictures")
description = models.CharField(max_length=500, blank=True)

def __str__(self):
return f'{self.user.username}\'s Profile...'

#NEW CODE BELOW
@receiver(post_save, sender=User)
def create_profile(sender, instance, created, **kwargs):

if created:
Profile.objects.create(user=instance)

#NEW CODE ABOVE

Code 19 financeblog\profiles\models.py
 

We are importing a signal called post_save. Next, we are importing a
function called the receiver.

Below our Profile model, we have created a function called
create_profile that is decorated by the receiver function. The receiver
function takes two parameters. The first one specifies a signal, and the second
one takes the User model. It means that whenever a User model has been
saved, Django will emit a Signal which we want to receive. After receiving
the Django Signal, we are calling the create_profile function and executing
our business logic.

Our receiver function passes several arguments to the create_profile
function. The created parameter is a boolean value that tells us whether the
sender object was created or updated. Inside the create_profile function
body, we create a Profile object and set its user field to the User that was just



created. We put our signals and receivers inside the models.py file of the
application Profile.

Verifying the results

Now open the admin site and delete the test user we previously created:
 

Figure 31 Deleting User

Now add a new user as described on previous pages and call it - again -
test. After creating the user successfully, go to the Profiles page in the admin
site to verify that the signal received successfully and the profile was created.
 



Figure 32 After adding a new user
 

You can see that Django automatically created the Profile of the User test
we just created. We don’t have to worry about creating profiles manually, as
those will get created automatically whenever a user is created.
 

Delete Profile automatically

Just as we want the Profile of each user to be created automatically, we
want each Profile to be deleted when a user is deleted. Let’s check if that
behavior is already implemented by deleting a random (non-superuser) user. I
created manually a User Account for myself. Now let’s delete it inside
Django shell:
 

Terminal
 

>>> python manage.py shell
 

>>> from django.contrib.auth.models import User
 



>>> andrey = User.objects.get(pk=2)
 

>>> andrey
 

<User: Andrey_Bulezyuk>
 

>>> andrey.delete()
 

(2, {'profiles.Profile': 1, 'auth.User': 1})
 
>>> exit()
 

As the output of “andrey.delete()” already indicates, two objects were
deleted: profile. Profile and auth.User. This means that Profile is being
deleted automatically when a User Account is deleted. As a refresher: this
logic is not covered with a Signal but with the one-to-one relationship in the
Profile model. To be more precise, it’s the on_delete parameter.
 

user = models.OneToOneField(User, on_delete=models.CASCADE)

Account Creation
Now that our Profile model is working correctly, we create a register

page so that users can create a new account on our website. Let’s see how we
can accept user data in Django.
 

Accepting User Input using Forms

We use Django’s Form system to accept user input. Using Django forms,
we can easily define our form fields and conveniently display them on the
template very quickly. We can collect data from users and validate it in our
view with the is_valid method. If errors are found, then the user is sent back
to the form with error messages. 
 

When the validation is done, we have access to all the data submitted by
the user in a cleaned_data dictionary on the form instance. We can then



perform further actions on the validated data - e.g.: apply further business
logic. 
 

By default, Django provides two base form classes, i.e., forms.Form and
forms.ModelForm. We create our forms by inheriting from either of the two.
Kind of like models, the attributes of our form class will represent a field in
the HTML form.

Django forms.Form

If we extend from forms.Form,  we get an empty skeleton form where
we have to configure everything ourselves, from creating fields and field
types to handling data after it’s validated inside the view. This is suitable
when we are not doing anything that directly affects a model, for example,
creating a newsletter or a contact us form.
 

Django forms.ModelForm

On the other hand, if we extend from forms.ModelForm, we will have a
form tied to a specific model. The form fields are automatically generated for
us based on the model we provide our form. But we can configure the
premade fields as we need. This form also gives us a save method, which will
automatically save or update an instance of the model to the database if form
fields were validated. A form created using ModelForm will validate its field
based on the fields that are defined in the model itself. We can, however, if,
for some reason, we want our form fields of a model, validate the fields
differently from the definitions defined in the model itself.
 

Register Form

Create a file called forms.py inside the profiles application and add the
following code:
 



from django import forms
from django.contrib.auth.forms import UserCreationForm
from django.contrib.auth.models import User

class RegisterForm(UserCreationForm):
first_name = forms.CharField(max_length=50, required=True)
last_name = forms.CharField(max_length=50, required=True)
email = forms.EmailField(required=True)

class Meta:
model = User
fields = ['email', 'username', 'first_name', 'last_name', 'password1', 'password2']

Code 20 financeblog\profiles\forms.py
 

This is our registration form. Note that our RegisterForm class is not
inheriting from either Form or ModelForm. Instead, it is inheriting from a
class called UserCreationForm. As stated earlier, Django provides an
authentication system out of the box which has a User model. Django also
provides a form for creating the mentioned User that takes care of various
validations such as checking the passwords etc. Under the hood, this
UserCreationForm class inherits from ModelForm.
 

We could have used this UserCreationForm as is in our view. The form
would still work just fine. But the form would only show username,
password, and password confirmation fields on our registration page.
These are the required fields of Django’s User model as defined in its model
definitions.
 

However, we also want to show the other optional fields of the User
model, which are first_name, last_name, and email. We also want to make
them required. That is why we are further configuring the
UserCreationForm. 

We define the fields first_name and last_name  and set their type to
CharField and their required attribute to True. We are also defining email
(type: EmailField) and also setting its required attribute to True. As stated



earlier, these fields are not required in Django’s User model, and the user can
leave them blank. However, we want to require these fields so a user can’t
leave them empty. That is the only reason we are redefining them.
 

ModelForm Meta Class

Informs inheriting from ModelForm, we have to define a Meta class
inside the form class. The Meta class must define the attribute called model
to pass the model we want our form to be built for. 

Optionally, we can define the attribute fields, which must be a list of
fields from the model. If we don’t provide this field, ModelForm will build a
form with every field from the model. 

Django’s User model also has other fields like is_active, is_staff,
is_superuser, etc. We don’t want to display them in the form. That is why
we are only including the six fields in the fields attribute. Those are the fields
that we want to be displayed on the registration page. Now that we have
created a form.  Let us build a view for our register page.
 

Creating User Register View

Open views.py inside the profiles application and add the following
code:
 

from django.shortcuts import render, redirect
from .forms import RegisterForm

def register(request):
if request.method == "POST":

form = RegisterForm(request.POST)
if form.is_valid():

form.save()
return redirect('blog_list')

else:
form = RegisterForm()

return render(request, "profiles/register.html", {"form": form})



Code 21 financeblog\profiles\views.py
 

We are creating a view called register. We are checking whether the
request performed by the client is a POST request or not. Whenever we open
a link or visit a page, we perform a GET request, but when we submit a form
to a webpage, we are performing a POST request. That is what we are
checking here through the request.method value.

If the request method is POST, we are instantiating an instance of the
RegisterForm, and passing it the data the user sent through the form on the
website, which is available to us under request.POST.

Afterward, we are calling the is_valid method of our RegisterForm. It will
perform default validation of the fields defined in our form or any custom
validation we might have added. If the data submitted by the user is valid and
doesn’t cause any errors, we are executing the save method. This method will
create a new User in the database.

Note that this save method only comes with forms that inherit from
ModelForm. The reason we used UserCreationForm is that it also adds other
validation for us such as checking the password length and matching if the
two passwords match or not.

Once the form is saved and a new user is created, we are using the
function redirect, which will redirect us to another page. We pass it the URL
name of our blog list view that we defined in its URL pattern
(finanaceblog/blog/urls.py).
 

path("", views.list_blogs, name="blog_list"),

If the request performed by the user/client is not POST, meaning they
opened the register page on their browser (remember this is a GET request as
they haven’t sent any data), we are instantiating an empty instance of the



RegisterForm.

Lastly, we are returning the render method with the template we want our
view to link with and pass our form to the template.
 

URL pattern for Register View

Now that the register view has been created, we have to define its URL
pattern. Unlike we did with the blog application where we created a separate
URLs file inside the application, we will include the URL patterns of our
profiles application directly in the urls.py file of the project. That is because
we want to show these URL patterns right after the domain name and not
under some path like “/accounts” or “/profiles”.

Open the urls.py of the project inside the financeblog directory and add
the following import.

from profiles import views as profiles_views

Here we are importing the views of our profiles application as
profile_views. Next, add the following URL pattern to the urlpatterns list:
 

path('register/', profiles_views.register, name="register")

Here we are defining a URL pattern to our register view under the path
“register/”. We have given it the name register. Just to make things clear, this
is how the urls.py file of your financeblog directory should look like after
making the changes above:
 

from django.contrib import admin
from django.urls import path, include
from django.conf import settings
from django.conf.urls.static import static
#NEW CODE BELOW
from profiles import views as profiles_views



#NEW CODE ABOVE
urlpatterns = [

path('admin/', admin.site.urls),
path('', include('blog.urls')),
# user related paths below
path('register/', profiles_views.register, name="register")
# user related paths above
]
urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

Code 22 financeblog\financeblog\urls.py

Creating Template for the Register View

Inside the profiles application, create the following directory structure:
 

This register.html file is what our register view will look for based on its
render function’s path. Add the following markup to the register.html we
just created:
 

{% extends "blog/base.html" %}
{% block content %}
<div class="landing bg-dark">

<div class="container">
<div class="row align-items-center justify-content-center">

<div class="col-sm-12 col-lg-6 text-center">
<h1 class="text-white font-weight-bold display-3 mb-3">Register</h1>

</div>

</div>

</div>
</div>
<div class="container bg-light mt-n5 p-5 rounded ">

<div class="row">



<div class="col-12">
<form method="POST">

{% csrf_token %}
{{form.as_p}}
<div class="form-group">

<button class="btn btn-outline-dark">Submit</button>
</div>
<a href="#">Login?</a>

</form>
</div>

</div>
</div>
{% endblock content %}

Code 23 financeblog\profiles\templates\profiles\register.html
 

Just as we did with the blog detail and blog list view, we are inheriting
from the base.html template. Next, we are opening the content blocks and
adding our content between the tags. We are creating a heading that says
“Register”. Lastly, we are creating the form with the method set to ”POST”
because by default, the default method of HTML forms is GET.

Inside the form, we are calling the csrf_token template tag. This token is
used to ensure that the form was sent and created by one of the trusted hosts
defined under the ALLOWED_HOSTS setting. Whenever dealing with
forms, you have to use this template tag. Otherwise, you will get a 403
forbidden error.

Next, we put our form variable inside the HTML form by simply calling
the as_p method on it. This will automatically output the form fields inside
our html form. The as_p method will wrap our fields inside a paragraph tag
before outputting them to the markup.

Note that the form variable will only create the input fields, we have to
create the submit button and the html form wrapper additionally. We have
also created a Login link at the bottom that currently doesn’t lead you
anywhere as we have yet to create a login page.



 

Verifying the Register View Results

Open http://localhost:8000/register and you should see the following:
 

Figure 33 Register View
 

You can see that just outputting the form variable created all of these
fields for us. It also added some helper text that comes with the User model
by default. Now try adding some information to the form and submit it. I will
intentionally submit the incorrect data to show you that the validation works.
 

http://localhost:8000/register


Figure 34 Intentionally wrong data fillup
 

I supplied an invalid email address and wrote different passwords in the
password and password confirmation fields. You can see that it is printing the
errors “Enter a valid email address” and “The two passwords don’t match”.
Perfect, the validation works. We can be sure that all User Accounts will
have a certain degree of data quality. 

Now let’s input correct data and try creating a user. If we are successful,
we should get redirected to the homepage where all of our blogs are listed. I
will create a user, john.
 



Figure 35 Filling correct data
 

I was successfully redirected to the homepage. It means our User was
created. Open the admin site and make sure that john’s User Object and
john’s Profile Object do exist.
 

Figure 36 User list



Adding Django Plugin “Crispy Forms”

Our register page works fine, but the form doesn’t look good at all. We
are not controlling the markup of the fields, errors, and helper text ourselves.
Instead, we are leaving it up to Django ModelForm.

We can gain more control by looping over the form variable and handling
how to display each field and related data such as errors. But that would be
too time-consuming if our goal is simply to have fields that look more
organized. Luckily we have a package called django-crispy forms that will
automatically convert our forms to bootstrap forms. Close the development
server and install the package through the following command.
 

Terminal
 

(MyProject) E:\MyProject\financeblog>pip install django-crispy-forms

Open the settings.py file of the project and add the crispy form App to
INSTALLED_APPS. Your list of installed apps should look like this:
 

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'blog',
'profiles',
'crispy_forms',
]

Figure 37 financeblog\financeblog\settings.py 

Also, add the following setting in the settings.py file:
 

CRISPY_TEMPLATE_PACK = 'bootstrap4'



django-crispy-form will use this setting to convert our Django forms to
bootstrap 4 templates which is what we are using. Now open the
register.html inside the profiles application under the path templates >
profiles > register.html and add the following template tag at the top after
the extends template tag:
 

{% load crispy_forms_tags %}

We are loading the template tags of the package we just installed through
this template tag. Now in the same file, scroll down to where we are
outputting our form as {{form.as_p}} and change it to:
 

{{form|crispy}}

We have removed the as_p method and are now calling the crispy filter
on our form variable. Now your register.html file should look like this:

{% extends "blog/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="landing bg-dark">

<div class="container">
<div class="row align-items-center justify-content-center">

<div class="col-sm-12 col-lg-6 text-center">
<h1 class="text-white font-weight-bold display-3 mb-3">Register</h1>

</div>
</div>

</div>
</div>
<div class="container bg-light mt-n5 p-5 rounded ">

<div class="row">
<div class="col-12">

<form method="POST">
{% csrf_token %}
{{form|crispy}}
<div class="form-group">

<button class="btn btn-outline-dark">Submit</button>
</div>
<a href="#">Login?</a>

</form>



</div>
</div>
</div>
{% endblock content %}

Code 24 financeblog\profiles\templates\profiles\register.html
 

Run the development server and validate that the register page works as
intended. Create a couple of new accounts and test the limits, required fields,
lengths, etc.
 
 

Figure 38 Updated register page
 

You can see that our form now looks completely different - definitely
better. The crispy template filter that we applied to our form will render our
form according to bootstrap 4 classes now defined in the settings.py file in
the setting CRISPY_TEMPLATE_PACK.
 



Figure 39 Crispy Template filter effect

Another obvious point is that the error messages are highlighted and
attract attention to correct the inputs. 
 

Django Messages Framework
Our register view works. The forms look great. There is just one thing left

to complete it, and these are flash messages. In web applications, a flash
message is a one-time message shown to the user once they perform some
action, e.g. user either created something or deleted something. We will show
them a message whether it was successful or not. 
 

In our case, we want to display a one-time message after the user has
successfully registered. Django has a message system that allows us to do
this very quickly.  Open the views.py file of the profiles application and add
the following import to import django’s message framework:
 

from django.contrib import messages



Next, in the register view, add the following line of code right before the
redirect function call after we are calling the save method on the form:
 

messages.success(request, "User created successfully!")

We are creating a flash message, and it is of type success. We have
different types of messages, e.g., info, warning, etc. You can use it to
determine what sort of styles you want to apply for different kinds of
messages on the template. The first parameter is always the request object,
and the second parameter is our message we want to show.  After making the
changes, this is how your register view should look like:
 

def register(request):
if request.method == "POST":

form = RegisterForm(request.POST)
if form.is_valid():

form.save()
messages.success(request, "User created successfully!")
return redirect('blog_list')

else:
form = RegisterForm()

return render(request, "profiles/register.html", {"form": form})

Code 25 financeblog/profiles/views.py
 

Open the base.html file inside templates>blog directory of your blog
application where all of our templates extend from and add the following
code after the content block:
 

{% if messages %}
{% for message in messages %}

<div class="alert alert-{{ message.tags }} alert-dismissible fade show custom-alert"
role="alert">

<strong>{{ message }}</strong>
<button type="button" class="close" data-dismiss="alert" aria-label="Close">

<span aria-hidden="true">×</span>
</button>

</div>
{% endfor %}

{% endif %}



Code 26 financeblog\blog\templates\blog\base.html
 

We are checking if any messages have been sent. If there are messages,
we are looping over the sent messages and displaying them through the
message variable inside an alert container. The color of the alert is
determined by the message.tags variable, which will tell us the type of
message i.e., success, info or warning etc. Next, we are displaying the actual
message. After making the changes, your base.html file should look like this:
 

{% load static %}

<!doctype html>
<html lang="en">

<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link rel="stylesheet"

href="https://cdn.jsdelivr.net/npm/bootstrap@4.5.3/dist/css/bootstrap.min.css"
integrity="sha384-
TX8t27EcRE3e/ihU7zmQxVncDAy5uIKz4rEkgIXeMed4M0jlfIDPvg6uqKI2xXr2"
crossorigin="anonymous">

<link rel="preconnect" href="https://fonts.gstatic.com">
<link href="https://fonts.googleapis.com/css2?

family=Poppins:wght@400;600;700&display=swap" rel="stylesheet">
<link rel="stylesheet" type="text/css" href="{% static 'blog/main.css' %}">
<title>My Finance Blog</title>

</head>
<body class="bg-light">

<header>
<nav class="navbar navbar-expand-lg navbar-dark bg-dark">

<div class="container">
<a class="navbar-brand mb-0 h1" href="{% url 'blog_list' %}">My Financial

Blog</a>
</div>

</nav>
</header>

{% block content %}
{% endblock content %}

{% if messages %}
{% for message in messages %}

<div class="alert alert-{{ message.tags }} alert-dismissible fade show custom-alert"
role="alert">

<strong>{{ message }}</strong>
<button type="button" class="close" data-dismiss="alert" aria-label="Close">



<span aria-hidden="true">×</span>
</button>

</div>
{% endfor %}

{% endif %}
<script src="https://code.jquery.com/jquery-3.5.1.min.js" integrity="sha256-

9/aliU8dGd2tb6OSsuzixeV4y/faTqgFtohetphbbj0=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@4.5.3/dist/js/bootstrap.bundle.min.js"

integrity="sha384-
ho+j7jyWK8fNQe+A12Hb8AhRq26LrZ/JpcUGGOn+Y7RsweNrtN/tE3MoK7ZeZDyx"
crossorigin="anonymous"></script>

<script src="https://cdn.jsdelivr.net/npm/js-cookie@rc/dist/js.cookie.min.js"></script>
</body>

</html>

Code 27 financeblog\blog\templates\blog\base.html
 

Now go to http://localhost:8000/register and create a user. After you
create the user and get redirected to the home page, you should now see an
alert message in the right bottom corner.
 

Figure 40 User creation alert

Remember the one-time message we talked about? Refresh the page, and
you should not see the alert message again. This is very useful to notify the
user whether an action took place and whether that action was successful or

http://localhost:8000/register


not.

Login and Logout
Creating Views

Now that we have built the register view, it only makes sense to create the
login and logout views. Django’s built-in auth application already has a login
and logout view, so we will use them instead of making ours from scratch.

By default, these views will render the admin site's template page, but we
will be changing these defaults to display our custom templates. Open the
urls.py file of the project inside the financeblog directory and add the
following import:
 

from django.contrib.auth import views as auth_views

We are importing the views of Django’s auth application as auth_views.
Next, add the following URL patterns inside the URL patterns list.
 

path('login/', auth_views.LoginView.as_view(template_name="profiles/login.html"),
name="login"),

path('logout/', auth_views.LogoutView.as_view(template_name="profiles/logout.html"),
name="logout"),

We are creating two new URL patterns for login and logout. We are then
using Django auth’s LoginView and LogoutView. Note that these are class-
based views (so far, we’ve only made functional views, but we will get into
these shortly) and add class-based views.
 

We must add them by calling the function as_view of a class-based view.
Next, you can see that we are passing a template_name to the as_view
function. This will determine what template to display for these views. After
making the changes, your project’s urls.py file inside the financeblog
directory should look like this.



 

from django.contrib import admin
from django.urls import path, include
from django.conf import settings
from django.conf.urls.static import static
from profiles import views as profiles_views
#NEW CODE BELOW
from django.contrib.auth import views as auth_views
#NEW CODE ABOVE
urlpatterns = [

path('admin/', admin.site.urls),
path('', include('blog.urls')),
# user related paths below
path('register/', profiles_views.register, name="register"),
path('login/', auth_views.LoginView.as_view(template_name="profiles/login.html"),

name="login"),
path('logout/', auth_views.LogoutView.as_view(template_name="profiles/logout.html"),

name="logout"),
# user related paths above
]
urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

Code 28 financeblog\financeblog\urls.py
 

By default, LoginView will redirect us to a path of “accounts/profile”.
We don’t want that. We want to redirect to our homepage if a user logged in
successfully. Open the settings.py file inside the financeblog directory and
add the following setting.
 

LOGIN_REDIRECT_URL = "blog_list"

Upon successful login, this setting will redirect us to the”blog_list” URL,
which is the name we gave to the homepage path.
 

Creating Templates

We’ve defined the paths for the login and logout templates, but they don’t
exist yet. Create two files, login.html and logout.html, inside the
templates>profiles directory of your profiles application. Your profiles
application should now have the following directory structure for the



templates directory.
 

Open the newly created login.html file and add the following code to it.
 

{% extends "blog/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="landing bg-dark">

<div class="container">
<div class="row align-items-center justify-content-center">

<div class="col-sm-12 col-lg-6 text-center">
<h1 class="text-white font-weight-bold display-3 mb-3">Log In</h1>

</div>
</div>

</div>
</div>
<div class="container bg-light mt-n5 p-5 rounded ">

<div class="row">
<div class="col-12">

<form method="POST">
{% csrf_token %}
{{form|crispy}}
<div class="form-group">

<button class="btn btn-outline-dark">Submit</button>
</div>
<a href="{% url 'register'  %}">Register?</a>
<a href="#">Forgot Password?</a>

</form>
</div>

</div>
</div>
{% endblock content %}

Code 29 financeblog\profiles\templates\profiles\login.html
 



This template is no different from our register.html template other than
the fact that the heading now says “Login” and we’ve added two links below
the form. One link leads to the register page and the other link for “Forgot
Password” currently leads you nowhere. Open the logout.html file we just
created add the following code to it:
 

{% extends "blog/base.html" %}
{% block content %}
<div class="container bg-light mt-5 p-5 rounded ">

<div class="row">
<div class="col-12">

<h2>You have been logged out.</h2>
<a href="{% url 'blog_list' %}">Home</a>

</div>
</div>
</div>
{% endblock content %}

Code 30 financeblog\profiles\templates\profiles\logout.html
 

If we are logged in and visit the logout link, Django will log us out and
show us this template. We are adding a link to the home page.
Make sure you are logged out by visiting the admin site. Next, Open
http://localhost:8000/login. I will intentionally enter incorrect credentials to
see if we receive error messages as expected.
 

http://localhost:8000/login


Figure 41 Login View
 

You can see that it does work. Now log in with the superuser and visit the
admin site. You should be logged in. Let’s check our logout page. Make sure
you are logged in and visit the link http://localhost:8000/logout.
 

http://localhost:8000/logout


Figure 42 After Successful login
 

Now visit the admin site to check if you were logged out, and if you are
shown the login screen, it should mean that you were indeed logged out
successfully. Now that we have created the login page, we should go to the
register template and add the login page link. Open the register.html file and
scroll down to where it says:
 

<a href="#">Login?</a>

Now change its href, so it points to our login page:
 

<a href="{% url 'login' %}">Login?</a>

global Navigation Bar
Currently, we have no way to differentiate whether a user is logged in or

not. We have to check with the admin site every time - obviously not usable.
Let’s display the login and register links in the Navigation Bar if the user is
not logged in and show a logout link if the user is logged in.

Open the base.html file inside the blog application’s templates > blog
directory. Replace the header html tag with the following code.
 

<header>
<nav class="navbar navbar-expand-lg navbar-dark bg-dark">

<div class="container">
<a class="navbar-brand mb-0 h1" href="{% url 'blog_list' %}">My Financial Blog</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-

target="#navbarSupportedContent"
aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle

navigation">
<span class="navbar-toggler-icon"></span>

</button>
<div class="collapse navbar-collapse" id="navbarSupportedContent">

<ul class="navbar-nav ml-auto">
{% if request.user.is_authenticated %}



<li class="nav-item">
<a href="#" class="nav-link">Profile</a>

</li>
<li class="nav-item">

<a href="{% url 'logout' %}" class="nav-link">Logout</a>
</li>
{% else %}
<li class="nav-item">

<a href="{% url 'login' %}" class="nav-link">Login</a>
</li>
<li class="nav-item">

<a href="{% url 'register' %}" class="nav-link">Register</a>
</li>
{% endif %}

</ul>
</div>

</div>
</nav>

</header>

Code 31 financeblog\blog\templates\blog\base.html
 

Using the request object, we have access to the user object associated
with a request. We are creating navigation links and we have added a
conditional using the if template tag.

We are using the attribute is_authenticated to determine whether the user
is logged in or not. This value will be False if we are logged out and True
when we are logged in. If we are authenticated, we are showing two links,
logout and profile.

The profile doesn’t lead us anywhere currently and the logout page direct
us to the logout page. If we are not authenticated, We are displaying the login
and register navigations links. Remember that we are building the urls using
the url template tag and passing it the name we gave our URL patterns.
Guests will see the following navigation bar.
 



Figure 43 After logout
 

When you are logged in, you should see Profiles and Logout:
 

Figure 44 Logged In. Hence there is a logout option



Creating Profile Frontend
Profile View

Let’s create a profile view that will be responsible for displaying the
profile of a user. Open the views.py of the profiles application and add the
following view.
 

def profile(request, pk):
user = get_object_or_404(User, pk=pk)
return render(request, "profiles/profile.html", {"user": user})

Code 32 financeblog\profiles\views.py
 

This value is the same as our blog detail view. The only difference is we
are fetching a User. It will display a 404 error if no user is found matching
the pk we provide our view. Make sure to import the get_object_or_404
function and User model.
 

Warning, this file is missing two imports, and you need to figure out what
is missing and import it (If you need help, take a look at it).
 

Profile URLs

Open the urls.py file of the project inside the financeblog directory and
add the following URL pattern to the urlpatterns list: 
 

path('profile/<int:pk>',profiles_views.profile,name="profile")

Code 33 financeblog\blog\urls.py
 

This URL pattern is also very similar to our blog detail view’s URL
pattern. We are passing a value pk of type int, which means it will be a
number. Next, we are routing the profile view we created in our views file to



the pattern. We’re also giving this URL pattern a name of a profile.
 

Profile Template

You know by now, add a file called profile.html inside the
templates>profiles directory of your profiles application, where all of our
profiles application’s templates live. Add the following markup to it:
 

{% extends "blog/base.html" %}
{% block content %}
<div class="container">

<div class="row pt-5">
<div class="col-sm-12 col-lg-3 mb-3 text-center">

<img class="profile-image" src="{{ user.profile.image.url }}" alt="Hello">
</div>
<div class="col-sm-12 col-lg-9">

<h1 class="font-weight-bold">{{user.first_name}} {{user.last_name}}</h1>
<p>{{user.profile.description}}</p>
{% if request.user ==  user %}

<div class="links">
<a href="#" class="btn btn-sm btn-primary">Update Profile</a>

</div>
{% endif %}

</div>
</div>
</div>
{% endblock content %}

Code 34 financeblog/profiles/templates/profiles/profiles.html
 

As always, we are extending from the base.html template. We are
displaying the user’s first name and last name. Next, we are showing the
description field that we added to the profile model. 

Note that the User model and the Profile model share a one-to-one
relationship. So we can reverse-lookup the profile associated with a user
using the user.profile.some_field syntax. That is how we are accessing the
description field on the profile of a specific user.



We are displaying the image we added to the profile model. We are
accessing the image’s URL that is available by the URL value we have
available on image fields. If the user uploaded an image, it would show that
one, and if they didn’t, it would show the default one.

Before we move any further, let’s add our profile page link to the
navigation bar. Currently, there is a link on the navigation bar shown to
logged-in users called profile, but it doesn’t take you anywhere. Open the
base.html file inside the blog application’s template folder and find the
navigation tag:
 

<li class="nav-item">
<a href="#" class="nav-link">Profile</a>
</li>

Code 35 financeblog\blog\templates\blog\base.html
 

Now change it’s href so it leads us to our logged in user’s profile:
 

<li class="nav-item">
<a href="{% url 'profile' request.user.pk %}" class="nav-link">Profile</a>
</li>

Code 36 financeblog\blog\templates\blog\base.html
 

We are passing it the profile url and also passing it the current logged in
user’s pk that is available to us on the request object. Now open the
development server and visit the site. Make sure you are logged in and open;
click on the profile link in the navigation bar. It should lead you to the profile
page of the logged-in user:
 



Figure 45 Logged In user
 

You can see that it works perfectly. Note that you can access other user’s
profiles as well by directly typing their URL address. For example, this is the
profile of another user:
 



Figure 46 Different user profile
 

Right away, you can notice that this user is not showing the “update
profile” button. This is because of the conditional “{% if request.user ==
user %}” in the template. We are checking if the user viewing the page
(request.user) is the same user we are displaying (user).

This means users will only be shown the update button on their profile
page only when they are logged in. Currently, this button leads you nowhere
as we haven’t added a profile update view yet. 

You should also notice that this user has no description yet, and that is
because it is blank. On our register page, we were only accepting User model
information. We need a form to fill the description field or a default
description provider.

We never showed the description and image fields of the Profile model to
the user. That was to keep the view simple and not overload the form. We
will now also add the field image and description of the profile model on our
update page. So our users can edit the details of their page once they’ve
signed up.
 

Profile Update Forms
Remember that User and Profile are two separate models. That is why we

will create two forms that extend from ModelForm class. Open the forms.py
file of the profiles application and add the following two forms:
 

class UserUpdateForm(forms.ModelForm):
email = forms.EmailField(required=True)
first_name = forms.CharField(max_length=50, required=True)
last_name = forms.CharField(max_length=50, required=True)
class Meta:

model = User



fields = [ 'email', 'username', 'first_name', 'last_name']
class ProfileUpdateForm(forms.ModelForm):

description = forms.CharField(widget=forms.Textarea, max_length=500, required=False)

class Meta:
model = Profile
fields = ['description', 'image']

Figure 47 finanaceblog/profiles/forms.py
 

By the way, one import is missing in the code above...will you figure it
out before getting an Exception? We are creating two forms. Let’s look at
UserUpdateForm. It is very similar to our RegisterForm, but it is different
as it doesn’t extend from UserCreationForm. We are only updating the user
and not creating it. That’s why we will not be using the register form.

We are redefining the email, first_name, and last_name fields to make
them required. Next, under the Meta class, we tell that we want this form tied
to the User model. As for the fields, we are not including the password fields
as we will not be updating those on the update page.

In the ProfileUpdateForm, we are redefining the description field. We
set the description as a CharField on the model definitions. By default,
Django forms will render CharField as HTML input of type text. However,
we want to show this field as an HTML textarea. We can do that through the
widgets attribute of a form field. That is why we are redefining the
description field in the ProfileUpdateForm.

We are also giving it a limit of 500 characters and setting the required
attribute to False. Next, under the metaclass, we are setting the Profile model
to this form. We are then assigning the image and description values to the
fields variable inside the Meta class. Our form will automatically generate the
input for the image field.
 

Profile Update View



Open the views.py inside the profiles application and add the following
imports:
 

from django.contrib.auth.decorators import login_required
from .forms import UserUpdateForm, ProfileUpdateForm

Code 37 financeblog\profiles\views.py
 

Next, add the following code to create the profile update view:
 

@login_required
def update(request):

if request.POST:
user_form = UserUpdateForm(request.POST, instance=request.user)
profile_form = ProfileUpdateForm(request.POST, request.FILES,

instance=request.user.profile)
if user_form and profile_form:

user_form.save()
profile_form.save()
messages.success(request, "Profile Updated Successfully!")
return redirect('profile', request.user.pk)

else:
user_form = UserUpdateForm(instance=request.user)
profile_form = ProfileUpdateForm(instance=request.user.profile)

context = {
'user_form': user_form,
'profile_form': profile_form,

}
return render(request, 'profiles/update.html', context)

Code 38 financeblog\profiles\views.py

We are wrapping our update view with the login_required decorator
function we imported. It will only allow logged-in users to access this page.
Next, as we did in the register view, we are checking if the request is of type
POST or not. If it is, we are creating instances of the UserUpdateForm and
ProfileUpdateForm and passing them the user-submitted data through the
request.POST and request.FILES. Any images or files the user sends through
the form are not available under request.POST, but somewhat under
request.FILES. That is why we are passing it to our ProfileUpdateForm



along with the request.POST. 

We are also passing the forms an instance parameter. To the
UserUpdateForm, we are passing the currently logged-in user available
under request.user and to the ProfileUpdateForm we are passing the profile
of the current user available under request.user.profile. This will tell the
form to update these instances and not create new instances of the models on
calling the save method.

Then we are calling the is_valid method on both of the forms. If both of
the forms were validated, we are calling the save method on the form. This
will update the instances of the user and profile model. If the forms were not
valid, it will send us back to the update page with errors. After the form is
saved we are creating a flash message and redirecting the user back to the
profile page.

If the request method was not POST, it means the user opened the update
page. We are, again, instantiating both of the forms, but this time we aren’t
passing the request.POST or request.FILES as no POST request was made.
We are still passing the instances to the form to make sure our form fields are
pre-populated so the user is not shown a blank form. 

We are creating a dictionary by the name of context and assigning it our
forms under keys of “user_form” and “profile_form”. Lastly, we are
returning the render method with the path of the template and context.

The last thing we need to do is set our LOGIN_REDIRECT setting. Our
login_required needs to know where to redirect unauthenticated users. Open
the setttings.py file inside the financeblog directory and add the following
setting:
 

LOGIN_URL = "login"



The name “login” here is the name we gave our login path. It will redirect
logged-out users if they try accessing this page.
 

Profile Update URL

Add the following URL pattern to the urlpatterns list inside the urls.py
inside the financeblog directory:
 

path('profile/update', profiles_views.update, name="update"),

Code 39 financeblog\blog\urls.py
 

Our updated view will now be available under the ’profile/update’ path.
We gave it the name “update”.

Profile Update Template

Create a file called update.html inside the templates>profiles directory
of the profiles application and add:
 

{% extends "blog/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="landing bg-dark">

<div class="container">
<div class="row align-items-center justify-content-center">

<div class="col-sm-12 col-lg-6 text-center">
<h1 class="text-white font-weight-bold display-3 mb-3">Update</h1>

</div>
</div>

</div>
</div>
<div class="container bg-light mt-n5 p-5 rounded blog">

<div class="row">
<div class="col-12">

<form method="POST" enctype="multipart/form-data">
{% csrf_token %}
{{user_form|crispy}}
{{profile_form|crispy}}



<div class="form-group">
<button class="btn btn-outline-dark">Submit</button>

</div>
</form>

</div>
</div>
</div>
{% endblock content %}

Code 40 finanaceblog/profiles/templates/profiles/update.py
 

Everything is the same as our previous templates. The only thing different
is that now we are displaying two forms. It is excellent to display more than
one Django form inside a single page. Note that our HTML form also has an
enctype property. This is compulsory when sending files over the form. If we
don’t specify this, our image will not be sent to the view.

Before checking the form, let’s quickly link it inside the profile page. If
you remember, the “Update Profile” link is currently dead. Open the
profile.html file inside the templates>profiles directory of the profiles
application and find this link:
 

<a href="#" class="btn btn-sm btn-primary">Update Profile</a>

Change it to the following, so it leads the user to the profile update page:
 

<a href="{% url 'update' %}" class="btn btn-sm btn-primary">Update Profile</a>

Now, if you open http://localhost:8000/profile/update and you should see
the following.
 

http://localhost:8000/profile/update


Figure 48 Update form
 

You can see all the fields are pre-populated. You can also see that both
the user and the profile forms are showing just fine. Upon updating some
fields and saving the form, you should be redirected to this page:
 



Figure 49 Profile Update Notification
 

Password Reset
Our profiles application is almost complete. The only thing left is to

create a password reset functionality so users can reset their password if they
forget it. We will send the users an email that will contain a link, using which
they will reset their passwords.
 

Setting Up SMTP Host

To send mails, we have to set up an SMTP host. We will use our Gmail
account to send emails but note that this is not suitable for a production
environment. 
 

To send mails from Gmail, you have to allow a less secure app access to
your Gmail. To do this, make sure you are logged in to your Google account
and visit https://myaccount.google.com.
 

Click the Security setting on the left sidebar and scroll down to where it
says “Less secure app access” and turn it on.
 

https://myaccount.google.com/


Figure 50 Google Security
 

If you have 2-step-auth activated, you need to create a new “App
Password” and use this password instead of your actual google password. It’s
advised to delete the App Password after the development is finished.

Now open the settings.py file of your project and add the following
settings to it:
 

EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
EMAIL_HOST = 'smtp.gmail.com'
EMAIL_PORT = 587
EMAIL_USE_TLS = True
EMAIL_HOST_USER=''
EMAIL_HOST_PASSWORD=''

Code 41 financeblog\financeblog\settings.py
 

Let’s go over these fields:
 

EMAIL_BACKEND: Through this setting, we are telling that we



want to use send mails over SMTP. There are other options
available such as a console backend or file backend.
EMAIL_HOST: This setting takes the host of our SMTP. We are
using Gmail.
EMAIL_PORT: This is the port to use for the SMTP server.
EMAIL_USE_TLS:  This determines whether to use a secure
connection  when communicating with the SMTP server.
EMAIL_HOST_USER: This field will hold our Gmail email
account.
EMAIL_HOST_PASSWORD: This field will hold the password
for the Gmail account.

In simple terms, using these settings, we are telling Django that we will
be sending our mail through a Gmail account.

In the EMAIL_HOST_USER and EMAIL_HOST_PASSWORD 
settings, you must add your Gmail account’s email and password as strings.
These will settings will use your Gmail account to send mails. I’ve added my
credentials to the EMAIL_HOST_USER and
EMAIL_HOST_PASSWORD, but I’m not showing them here for obvious
security reasons. We are ready to create the reset password view for our
profiles application.
 

Password Reset Views

Django’s auth application has a password reset feature already built for
us. This feature uses 4 different views for the whole process. Open the
urls.py file of the project, inside the financeblog directory and add the
following URL patterns:
 

path('password-reset/',
auth_views.PasswordResetView.as_view(template_name="profiles/password_reset.html"),
name="password_reset"),

path('password-reset/confirm/<uidb64>/<token>',
auth_views.PasswordResetConfirmView.as_view(template_name="profiles/password_reset_confirm.html"
name="password_reset_confirm"),



path('password-reset/done',
auth_views.PasswordResetDoneView.as_view(template_name="profiles/password_reset_done.html"
name="password_reset_done"),

path('password-reset/complete',
auth_views.PasswordResetCompleteView.as_view(template_name="profiles/password_reset_complete.html"
name="password_reset_complete"),

Code 42 financeblog\financeblog\urls.py
 

The first url pattern takes the view PasswordResetView. It will show us
a form where we can submit our email address. It will then send a one-time
password reset link to our email and redirect us to another view that will
show a success note. Note that it will not alert us in case the entered email
does not exist in our system. 

The second URL pattern takes the view PasswordResetConfrm. This is
the view that will actually allow us to change our password. The one-time
link that is generated in the PasswordResetView is done through this view. It
takes the user id encoded in base 64 and a token as its URL parameters.

The third URL pattern takes the view PasswordResetDone. This is the
view that will be shown to the user once they submit their email on the
PasswordResetView, and this view will only display a success message.

The fourth and last URL pattern takes the view
PasswordResetComplete. After the user successfully changes their
password, they are redirected to this page.

Password Reset Templates

Create 4 files, password_reset.html, password_reset_confirm.html,
password_reset_done.html, password_reset_complete.html, and place them
inside the templates>profiles directory of the profiles application.

Our templates directory has now the following directory structure.
 



 

 

Open password_reset.html and add the following markup:
 

{% extends "blog/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="landing bg-dark">

<div class="container">
<div class="row align-items-center justify-content-center">

<div class="col-sm-12 col-lg-6 text-center">
<h1 class="text-white font-weight-bold display-3 mb-3">Password Reset</h1>

</div>
</div>

</div>
</div>
<div class="container bg-light mt-n5 p-5 rounded ">

<div class="row">
<div class="col-12">

<form method="POST">
{% csrf_token %}
{{form|crispy}}
<div class="form-group">



<button class="btn btn-outline-dark">Submit</button>
</div>

</form>
</div>

</div>
</div>
{% endblock content %}

Code 43 financeblog\profiles\templates\profiles\password_reset.html
 

It is the same as our other templates that display a form. We are
displaying the heading “Password Reset”. Next, we are displaying the form.
In password_reset_done.html, add.
 

{% extends "blog/base.html" %}
{% block content %}
<div class="container bg-light mt-5 p-5 rounded ">

<div class="row">
<div class="col-12">

<div class="alert alert-info">
An email has been sent to you. Click the link in it to reset the password.

</div>
</div>

</div>
</div>
{% endblock content %}

Code 44 financeblog\profiles\templates\profiles\password_reset_done.html
 

This template only displays a message to the user that they should check
their email. It will be displayed once they have submitted the password reset
form. In password_reset_confirm.html, add:
 

{% extends "blog/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="landing bg-dark">

<div class="container">
<div class="row align-items-center justify-content-center">

<div class="col-sm-12 col-lg-6 text-center">
<h1 class="text-white font-weight-bold display-3 mb-3">Password Confirm?

</h1>



</div>
</div>      

</div>
</div>
<div class="container bg-light mt-n5 p-5 rounded ">

<div class="row">
<div class="col-12">

<form method="POST">
{% csrf_token %}
{{form|crispy}}
<div class="form-group">

<button class="btn btn-outline-dark">Reset Password</button>
</div>

</form>
</div>    

</div>
</div>
{% endblock content %}

Code 45 financeblog\profiles\templates\profiles\password_reset_confirm.html
 

This template, again, is the same as our password_reset.html template.
Users will be taken to this template when they click on the link they receive
in the password reset email. In password_reset_complete.html, add.
 

{% extends "blog/base.html" %}
{% block content %}
<div class="container bg-light mt-5 p-5 rounded ">

<div class="row">
<div class="col-12">

<div class="alert alert-success">
Password Reset Successful!

</div>
<a href="{% url 'login' %}">Log in?</a>

</div>
</div>
</div>
{% endblock content %}

Code 46 financeblog\profiles\templates\profiles\password_reset_complete.html
 

In this template, we are displaying that the user was able to reset the
password successfully. We are also adding a link to our login page.



Speaking of which, currently, there is a “Forgot Password?” link on our
login page that currently leads you nowhere. Let’s edit that so it leads you to
the password reset page. Open the login.html  file inside tempates>profiles
directory of the profiles application and find the following line:
 

<a href="#">Forgot Password?</a>  

Change the href so it points to our password reset view:
 

<a href="{% url 'password_reset' %}">Forgot Password?</a>

Testing Password Reset

Let’s test the password reset feature. Make sure you are logged out and
visit http://localhost:8000/password_reset:
 

Figure 51 Password Reset form
 

It works. Enter the email of the user, and it should lead you to the

http://localhost:8000/password_reset


following page:
 

Figure 52 Password reset email sent
 

Now open your inbox. You should have received an email from the
Gmail account you used for the SMTP server:
 

Figure 53 Password reset email
 



I’ve received the mail. On clicking the link inside the mail, it should lead
me to the following page:
 

Figure 54 New Password form
 

This is the page where we will reset the password. Change the password,
and you’ll see that our password reset feature is working correctly. And the
best part is that we didn’t even have to create it ourselves. We just hooked it
into our project and provided our custom templates for it.



VIEWS
Now that we have a working user system on our website where users can

register, login, log out, reset the password, etc. We should now consider
adding more features to our blog application. We will now add create,
update and delete views for the blog application, and we will make these
using class-based views.

In the above figure, we can see that we have completed the up-to user
authentication part in our blog application. And we will currently do the other
parts.
 

Generic Class Based Views

Introduction

So far, we’ve only created functional views. Django also has class-based
views. We can use either classes or functions to build our views.

Django also has generic class-based views. In simple terms, these are
views that allow us to do everyday web development tasks with very little
code as possible. Several generic class-based views are available to us, such
as CreateView, which allows us to create a “create” view for a model quickly
without creating a form. There is also a ListView which allows us to list
objects of a model very quickly. Let’s use these generic class-based views
and learn how not to code too much. 
 

Template Naming Convention

By default, Django’s generic views look for templates under the path
“(application)/(model)_(viewtype).html” where application refers to the
name of the application, model refers to the name of the model we passed our
generic view, and viewtype refers to the type of generic view we are creating.



However, views created from the CreateView, UpdateView, and
DeleteView generic views are an exception to this naming convention.

CreateView and UpdateVIew will share the same template, and the
template name is “(model)_form.html”. The “model” here is the name of the
model. We will pass the generic view, but the “form” after the underscore
character is literal. DeleteView template name is “(model)_confirm_delete”.
Model refers to the name of the model, and “_confirm_delete” are literal.

We can change these defaults by the tempate_name attribute on the
view. However, we will go with the default template naming convention.
 

Blog Create View
Basic Use Case of Generic Views

Let’s create a BlogCreateView using the generic CreateView. Open the
views.py file of the blog application and add the following import:
 

from django.views import generic

Code 47 financeblog\blog\views.py
 

Next add the following code:
 

class BlogCreateView(generic.CreateView):
model = Blog
fields = ['title', 'content']
def form_valid(self, form):

form.instance.author = self.request.user
return super().form_valid(form)

Code 48 financeblog\blog\views.py
 



We are creating a class-based view that extends from the generic
CreateView class. It will allow us to create a “Create” view very quickly
without writing a form.

A view that inherits from CreateView has two required attributes, i.e.,
model and fields. For the model, we are assigning it Blog, and for fields, we
are assigning it the title and content. Note that we left out the
date_published field as it will automatically get added according to the
model definitions. We are also not passing the author field because we want
to set the currently logged-in user as the author of the blog automatically.

Next, we are overriding the form_valid method and setting the currently
logged-in user (available inside the request object) as the author for the blog
we are creating.

We are doing it this way because currently, the author is unset as we
didn’t pass it through the fields attribute. We didn’t pass the author through
the fields attribute because it will then show the user a dropdown of users to
select from like it does in the admin site. We obviously don’t want that and
want to associate the current logged-in user with the author of the blog. 

Currently, anybody can access this view whether they are logged in or
not. We also have no way to send a flash message when the blog is created.
We can’t use the messages function or the login_required decorators as they
are not suited for class-based views.
 

Extending Generic View

We will use the LoginRequiredMixin and SuccessMessageMixin mixin
to fix this. Mixins are used to add additional functionalities to our class-based
views. Let’s import these at the top of the views.py file.
 

from django.contrib.auth.mixins import LoginRequiredMixin



from django.contrib.messages.views import SuccessMessageMixin

Code 49 financeblog\blog\views.py
 

Change the CreateBlogView, so it uses these mixins:
 

class BlogCreateView(LoginRequiredMixin, SuccessMessageMixin, generic.CreateView):
model = Blog
fields = ['title', 'content']
success_message  = "Blog Created Successfully!"

def form_valid(self, form):
form.instance.author = self.request.user
return super().form_valid(form)

Code 50 financeblog\blog\views.py
 

Our BlogCreateView is now inheriting from the mixins we imported
along with the CreateView. This is how you add mixins to class-based view,
i.e. make your class inherit from them. We have also added a new attribute
called success_message, which is the value that will be used to create the
flash message when the blog is created successfully.

Let’s add this view to the urls.py file of the blog application.  Add the
following URL pattern to the urlpatterns list:
 

path("blog/create", views.BlogCreateView.as_view(), name="blog_create")

Code 51 financeblog\blog\urls.py
 

This view will be available to use under the path “blog/create”. Since we
can’t just pass a class to a URL pattern, we pass BlogCreateView view by
calling its as_view method.

Now we should add the template for this view. According to the template
naming convention of generic views we discussed previously, our



BlogCreateVIew will look for its template under “blog/blog_form.html”.
Once again, this can be overridden, but we will stick with the naming
convention. Next, create a file called blog_form.html that is in the
templates>blog directory of the blog application. Add the following code to
it:
 

{% extends "blog/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="landing bg-dark">

<div class="container">
<div class="row align-items-center justify-content-center">

<div class="col-sm-12 col-lg-6 text-center">
<h1 class="text-white font-weight-bold display-3 mb-3">Blog</h1>

</div>
</div>

</div>
</div>
<div class="container bg-light mt-n5 p-5 rounded ">

<div class="row">
<div class="col-12">

<form method="POST">
{% csrf_token %}
{{form|crispy}}
<div class="form-group">

<button class="btn btn-outline-dark">Submit</button>
</div>

</form>
</div>

</div>
</div>
{% endblock content %}

Code 52 financeblog\blog\templates\blog\blog_form.html
 

It is a simple form template, very similar to the templates we’ve created
so far. The CreateView and UpdateView send their form under the form
variable to the template. It’s great that we didn’t even have to create a form
ourselves as the CreateView takes care of it for us.

Let’s test it out. First, make sure you are logged out and open



http://localhost:8000/blog/create. It should redirect you to the login page.
Now login and open the page again:
 

Figure 55 Blog Create View

It is only displaying the title and the content fields as we set in the view.
When we submit the form, it will set the currently logged-in user as the
author of this blog because of the form_valid method overriding. Let’s fill the
form to create a blog:
 

http://localhost:8000/blog/create


Figure 56 Blog filled up

It will show you this error page. Don’t worry, and our blog was created
just fine. Reading the error reveals the message “No URL to redirect to.
Either provide a URL or define a get_absolute_url method on the Model.”.

The generic CreateView will try to redirect us to the newly created model
instance on success, but it doesn’t know it’s URL path. It will look for a
method called get_absolute_url on the model, which will generate a URL
for the detailed view of the newly created instance. This method, by
convention in Django, is used to create URLs for instances of models.

Let’s create the get_absolute_url method on our Blog model. Open the
models.py file of the blog application and add the following import:
 

from django.urls import reverse

Next, add the following method to the Blog model class:
 



def get_absolute_url(self):
return reverse("blogs_detail", kwargs={'pk': self.pk})

Code 53 financeblog\blog\models.py
 

The reverse function takes a URL and additional keyword arguments. If
you remember, blogs_detail is the name of our detail_blog view, which
displays the blog's detail page, and it takes a pk parameter. We are passing
the current blog instance’s pk as the pk parameter to the URL. Lastly, the
reverse function will generate a URL and return it.

Let’s test the create view again. Create a view, and now it should lead
you to its detail page:
 

Figure 57 Detailed View
 



Figure 58 Successful redirection on the detailed view
 

Django successfully redirected us to the detail page of the newly created
blog. It also shows our flash message.

Blog Update View 
Let’s create an update view of our blog. We only want the author of the

blog to be able to update it. Any user that tries to access the update page of a
blog they are not the author of will be shown a “Forbidden” page (HTTP
Status: 403).

Add the import to the views.py file of the blog application:
 

from django.contrib.auth.mixins import UserPassesTestMixin  

Add the following code to create the update view for our blog:
 

class BlogUpdateView(LoginRequiredMixin, UserPassesTestMixin,



SuccessMessageMixin, generic.UpdateView):
model = Blog
fields = ['title', 'content']
success_message  = "Blog Updated Successfully!"

def form_valid(self, form):
form.instance.author = self.request.user
return super().form_valid(form)

def test_func(self):
blog = self.get_object()
if self.request.user == blog.author:

return True
else:

return False

Code 54 financeblog\blog\views.py
 

This view is the same as our BlogCreateView except for three changes.
First, it inherits from UpdateView instead of CreateView. The difference
between the two is that the UpdateView will be expecting a pk parameter in
its URL pattern for identifying a model instance that we will be changing. It
will be updating an instance instead of creating a new one.

The second change is that we are now adding another mixin,
UserPassesTestMixin, to our update view. Using this mixin, we can add a
conditional pass to only allow access to this view if the currently logged-in
user is the author of this blog. 

Third and last change is the test_func method. This method is where you
put the conditional pass for the UserPassesTestMixin. In it, we are first
fetching the current blog that we are updating. Next, we are checking whether
the current user is the author of the blog. If our current user is the author, we
return True to indicate that it is okay to allow access, else it will restrict
access.

Let’s add the URL pattern for this view. Open the urls.py file of the blog
application and add the following URL pattern to the URL pattern list:



 

path('blog/<int:pk>/update', views.BlogUpdateView.as_view(), name="blog_update")

UpdateView requires a pk parameter in the URL pattern, and we are
passing that. We have given our blog update view the name blog_update. 

Both the CreateView and UpdateView generic views use the same
template, so we don’t have to create a template for our BlogUpdateView as it
will use the template for the BlogCreateView.

Now to test it out, visit http://localhost:8000/blog/6/update. Note that “6”
here is the pk of one of my blogs. If you enter a random pk in the URL and
no blog exists matching that pk, it will show a 404 error.
 

Figure 59 Blog Updating
 

http://localhost:8000/blog/6/update


Figure 60 Blog Update successful

You can see that it showed us the form, and it was prepopulated with our
existing data. The flash message is also saying that it was updated
successfully

Blog Delete
Generic Delete View

Users should be able to delete their blogs. Let’s add a delete view. Open
the views.py file of the blog application and add the following code:
 

class BlogDeleteView(LoginRequiredMixin, UserPassesTestMixin, generic.DeleteView):
model = Blog
success_message  = "Blog Deleted Successfully!"
success_url = "/"

def test_func(self):
blog = self.get_object()
if self.request.user == blog.author:

return True
else:

return False



def delete(self, request, *args, **kwargs):
messages.success(self.request, self.success_message)
return super(BlogDeleteView, self).delete(request, *args, **kwargs)

Code 55 financeblog\blog\views.py
 

Our BlogDeleteView extends from the generic DeleteView. The only
required value for views that extend from DeleteView is the model attribute.
We are ensuring that only the author of the blog can delete the blog through
the UserPassesTestMixin.

If you noticed, we are not using the SuccessMessageMixin in our
BlogDeleteView. The SuccessMessageMixin works by hooking itself on the
form_valid, but the form_valid method is not present in the generic
DeleteVIew, so it will not work.

That is why we are overriding BlogDeleteView’s delete method and
sending a flash message of type success. We are passing it
self.success_message, which refers to the success_message attribute we
created on BlogDetailView class. Note that we are only overriding the delete
method because we want to show a flash message. This is not required by the
DeleteView. Since we are using the messages object, make sure you don’t
forget to import it:
 

from django.contrib import messages

Let’s add BlogDeleteView’s URL pattern. Open the urls.py file of the
blog application and add the following URL pattern to the urlpatterns list:
 

path('blog/<int:pk>/delete', views.BlogDeleteView.as_view(), name="blog_delete"),  

Delete Confirmation Template

As per the template naming convention we discussed earlier, it will look



for a file called blog_confirm_delete.html as it’s template. Open the
templates>blogs directory of the blog application and create a file called
blog_confirm_delete.html. Add the following content to it:
 

{% extends "blog/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="container bg-light p-5 mt-5 rounded ">

<div class="row">
<div class="col-12">

<h2>Are you sure you want to delete the blog "<strong>{{object.title}}</strong>"?
</h2>

<form method="POST">
{% csrf_token %}
<div class="form-group">

<button class="btn btn-danger">Yes please.</button>
<a class="btn btn-info" href="{% url 'blog_detail' object.pk %}">No, take

me back</a>
</div>

</form>
</div>

</div>
</div>
{% endblock content %}

Code 56 financeblog\blog\templates\blog\blog_confirm_delete.html

BlogDeleteView view will display a confirmation page on a GET request,
i.e. opening the delete page. It will only delete the instance if we perform a
POST request against it.

We are sending an empty form with only the csrf_token template tag. If
we press the “Yes please.” button, it will perform a POST request on the
same URL, and our BlogDeleteView will then delete the blog instance. Let’s
delete a view to test it out. Open http://localhost:8000/blog/6/delete:
 

http://localhost:8000/blog/6/delete


Figure 61 Deleting The blog
 

Blog List View
Generic List View

Currently, we have the view list_blogs in the blog application that lists all
the available blogs. We will use the generic ListView to do this instead.
Open the views.py file of the blog application and remove the existing
list_blogs and replace it with the following view:
 

class BlogListView(generic.ListView):
model = Blog
ordering = ['-date_published']
paginate_by = 3

Code 57 financeblog\blog\views.py

We are creating a BlogListView view that extends from the generic



ListView. The only required attribute for the ListView is the model. We
have added an ordering attribute to order the queryset of blogs by the most
recent blog created through the date_published field. Next, we are adding an
attribute called paginate_by. This will add pagination to our view and will
only show up to 3 blogs at a time. Also, note that we aren’t using any mixins
as we want all users to view the home page where we will list all the blogs.

Remember, just updating the view in views.py is not enough. We need to
tell the “dispatcher” where to find the new view (and remove the pointer to
the old view). Let’s add this generic view to the urls.py file of our blog
application. Find the following URL pattern, which currently uses our old
list_blog view:
 

path("", views.list_blogs, name="blog_list"),

Change it to use our new BlogListView:

path("", views.BlogListView.as_view(), name="blog_list")

List View Template

Keeping the naming convention of generic views we discussed earlier in
mind, and our BlogListVIew will look for its template under
“blog/blog_list.html”.

Now remove the existing list.html template in the templates>blog
directory of the blog application and create blog_list.html file. Add the
following code to it:
 

{% extends "blog/base.html" %}
{% block content %}
<div class="landing bg-dark">

<div class="container">
<div class="row align-items-center justify-content-center">



<div class="col-sm-12 col-lg-6 text-center">
<h1 class="text-white font-weight-bold display-3 mb-3">Finance blogs to help you

succeed.</h1>
</div>

</div>
</div>

</div>
<div class="container p-5 rounded ">

{% if object_list.count > 0 %}
{% for blog in object_list %}
<div class="row blog mb-5">

<div class="col-lg-2 col-sm-12 text-center">
<a class="mugshot-container mb-1" href="{% url 'profile' blog.author.pk %}">

<div class="mugshot-img mb-2" style="background-
image:url({{blog.author.profile.image.url}})"></div>

<span>{{blog.author.username}}</span>
</a>
<small class="text-muted">{{blog.date_published|date:"d/m/Y h:i a"}}</small>

</div>
<div class="col-lg-10 col-sm-12">

<div class="blog-information">
<h1 class="font-weight-bold mb-3">{{blog.title}}</h1>
<p>{{blog.content|truncatewords:30}}</p>
<a href="{% url 'blogs_detail' blog.pk %}" class="font-weight-bold mb-3 d-inline-

block">
Read More

</a>
<div class="update-edit">

{% if request.user.is_authenticated and request.user == blog.author  %}
<a class="btn btn-sm btn-info" href="{% url 'blog_update' blog.pk %}">Update</a>
<a class="btn btn-sm btn-danger" href="{% url 'blog_delete' blog.pk %}">Delete</a>
{% endif %}

</div>
</div>

</div>
</div>
{% endfor %}
<div class="pagination">

<span class="step-links">
{% if page_obj.has_previous %}
<div class="step-divider">

<a href="?page=1">« first</a>
<a href="?page={{ page_obj.previous_page_number }}">previous</a>

</div>
{% endif %}
<span class="current">

Page {{ page_obj.number }} of {{ page_obj.paginator.num_pages }}.
</span>
{% if page_obj.has_next %}
<div class="step-divider">



<a href="?page={{ page_obj.next_page_number }}">next</a>
<a href="?page={{ page_obj.paginator.num_pages }}">last »</a>

</div>
{% endif %}

</span>
</div>
{% else %}
<h2 class="text-muted text-center">It's pretty lonely to have no blogs on a blogging site</h2>
<p class="mt-3 h3 text-muted text-center">Add a blog? <a href="{% url 'blog_create'

%}">Click here</a></p>
{% endif %}

</div>
{% endblock content %}

Code 58 financeblog\blog\templates\blog\blog_list.html

Our new blog_list.html template is quite similar to the list.html template
we previously used, but we’ve added more content to this one. We are now
displaying the image of the author as well as a link to their profile. Note that
the blog has an author field which is a User. The User has a one to one
relationship with the Profile model. Since these are all related, we can
retrieve data of related models pretty easily by treating them as python
objects like “{{blog.user.profile.image.url}}”.

We have also added a link to the update and delete a view of the blogs.
These will only be shown if the current user viewing the site is the author of
the blog because of the conditional we added.

Next, we have added the code for the pagination, which is available under
page_obj variable. Using it, we are displaying the current pagination page we
are on by the page_obj.number. We are then adding two conditionals to
check if there is a “next” or “previous” pagination page.

Lastly, we have added a conditional on adding a message if there are no
blogs int the database. The queryset sent to the templates in views created
from ListView generic view is called object_list. Open http://localhost:8000/
 

http://localhost:8000/


Figure 62 Object List
 

Figure 63 Single Blog
 

It looks perfect now. Clicking on the image or the username will lead you



to the profile page. The pagination is working correctly. In this view, I chose
to only display up to 3 blogs per page, and you can see that it works as
expected. The update and delete buttons are clickable because the current
logged-in user created these blogs. If you log out and visit the page as guest
or another user, you will see that the buttons are no longer visible.
 

Figure 64 Logged Out View

Blog Detail View
Generic Detail View

In the 2nd  chapter, we created the detail view for blogs with the name
detail_blog. Let’s use the generic DetailView to create it instead. Remove
the detail_blog view from the views.py file of the blog application and create
a new view.
 

class BlogDetailView(generic.DetailView):
model = Blog



The model attribute is required by views inheriting from the generic
DetailView. This is all the code we need - isn’t it awesome? Let’s add this
view to a URL pattern inside the urls.py file of the blog application. Find the
following URL pattern which uses our old detail_blog:
 

path("blog/<int:pk>", views.detail_blog, name="blogs_detail")

Now change it so it uses our BlogDetailView:
 

path("blog/<int:pk>", views.BlogDetailView.as_view(), name="blogs_detail"),

Code 59 financeblog\profiles\views.py
 

The BlogDetailView expects a pk parameter, passed in the request from
the URL, so we’ve added that here.
 

Template for Generic Detail View 

According to the naming convention for generic views, BlogDetailView
will look for it’s template under “blog/blog_detail.html”. Remove the old
detail.html inside templates>blog directory of the blog application and
create a new file called blog_detail.html. Add the following code to it:
 

{% extends "blog/base.html" %}
{% block content %}
<div class="container blog bg-light p-5 mt-5 rounded ">

<div class="row">
<div class="col-3 text-center">

<a class="mugshot-container mb-1" href="{% url 'profile' blog.author.pk %}">
<div class="mugshot-img mb-2" style="background-

image:url({{blog.author.profile.image.url}})"></div>
<span>{{blog.author.username}}</span>

</a>
<small class="text-muted">{{blog.date_published|date:"d/m/Y h:i a"}}</small>

</div>
<div class="col-9 question-information pb-1">

<h1 class="blog-card-title mb-3 font-weight-bold">{{blog.title}}</h1>
{% if request.user == blog.author %}

<a href="{% url 'blog_update' blog.pk %}" class="btn btn-sm btn-primary">



Update</a>
<a href="{% url 'blog_delete' blog.pk %}" class="btn btn-sm btn-danger">

Delete</a>
{% endif %}

</div>
</div>
<div class="row">

<div class="col-12 mt-5">
<p class="line-height text-justify"> {{blog.content}}</p>

</div>
</div>
</div>
{% endblock content %}

Code 60 financeblog\blog\templates\blog\blog_detail.html
 

This template is not much different from the detail.html we used
previously for the blog detail page. We are now displaying the author image
and adding a link to their profile. We have also added the update and delete
button, but these will only be shown if the current user viewing the template
is the author of the blog. This is how it’ll look now:
 

Figure 65 Detailed blog view



Blog Content Length

There is currently a problem with our blog model. There is no minimum
word limit for our blog. A user can create a blog that only says “hello” in the
body.
 

Figure 66 Any length allowable

This is bad as no blogs are only one word long. We need to verify that the
content of the blog is at least 300 characters long.

We can do it at the form level or the model level. If we do it at the form
level, the admin will still post blogs less than 300 characters long from the
admin site or the shell.

That is why we will add this validation to our model. Before we make this
change, delete all the existing blogs so we can start fresh. Best do it from the
admin site.
 



Figure 67 Adding validation
 

After deleting all the blogs, opening the homepage should display a
slightly depressive but encouraging message.
 



Figure 68 No blog in a site message
 

If you remember, we added a condition in the blog_list.html to display
this message if no blogs are found where object_list is a list full of Blog
Objects.
 

{% if object_list.count > 0 %}
...
{% else %}

<h2 class="text-muted text-center">It's pretty lonely to have no blogs on a blogging
site</h2>

...
{% endif %}

Code 61 financeblog\blog\templates\blog\blog_list.html

Blog Content Length Validator

Now we are ready to make the changes. Close the development server
and open the models.py file of the blog application. Import the following
validation function:
 

from django.core.validators import MinLengthValidator  

Now add the following code before defining the Blog model class:
 

content_validator = MinLengthValidator(limit_value=300, message="Content should be at least 300
characters long!")

Code 62 financeblog\blog\models.py
 

MinLengthValidator takes two parameters, limit_value and message.
We are creating a validator and setting the minimum character limit to 300.
We are also adding a message to display in case the validation fails. We are
storing this validator inside the content_validator variable.  Now add the



content_validator to the content attribute of the model:
 

content = models.TextField(validators=[content_validator])

Our content field will now use this validator. After making the above
changes, your models.py file should look like this:
 

from django.db import models
from django.utils import timezone
from django.contrib.auth.models import User
from django.urls import reverse
from django.core.validators import MinLengthValidator

content_validator = MinLengthValidator(limit_value=300, message="Content should be at
least 300 characters long!")

class Blog(models.Model):
title = models.CharField(max_length=250)
content = models.TextField(validators=[content_validator])
date_published = models.DateTimeField(default=timezone.now)
author = models.ForeignKey(User, on_delete=models.CASCADE)
def __str__(self):

return self.title
def get_absolute_url(self):

return reverse("blogs_detail", kwargs={'pk': self.pk})

Code 63 financeblog\blog\models.py
 

Now that we have altered a field on the model, we need to run the
migrations. Run the makemigrations command:
 

Terminal
 

(MyProject) E:\MyProject\financeblog>python manage.py makemigrations
Migrations for 'blog':

blog\migrations\0002_auto_20201218_1938.py
- Alter field content on blog

It created migrations. Now we need to run the migrate command to push
these model changes to our blog schema in the database:



 

Terminal
 

(MyProject) E:\MyProject\financeblog>python manage.py migrate
Operations to perform:

Apply all migrations: admin, auth, blog, contenttypes, profiles, sessions
Running migrations:

 Applying blog.0002_auto_20201218_1938... OK

Now run the development server and visit
http://localhost:8000/blog/create. Try creating a blog and no providing
enough words for the title, you’ll see an error message like the one on the
following Figure. Form Validation: Check!
 
 

Figure 69 Validation rule on blog creation
 

Blog Creation link

One final touch before moving on to the next Chapter. Currently, there is
no link on our website that leads to the blog creation page. Open the

http://localhost:8000/blog/create


base.html template inside the templates>blog directory of the blog
application and replace the html header tag with the code below:
 

html
<header>

<nav class="navbar navbar-expand-lg navbar-dark bg-dark">
<div class="container">

<a class="navbar-brand mb-0 h1" href="{% url 'blog_list' %}">My Financial Blog</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-

target="#navbarSupportedContent"
aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle

navigation">
<span class="navbar-toggler-icon"></span>

</button>
<div class="collapse navbar-collapse" id="navbarSupportedContent">

<ul class="navbar-nav">
<li class="nav-item ml-2">

<a href="{% url 'blog_create' %}" class="nav-link btn btn-dark">Write a Blog</a>
</li>

</ul>
<ul class="navbar-nav ml-auto">

{% if request.user.is_authenticated %}
<li class="nav-item">

<a href="{% url 'profile' request.user.pk %}" class="nav-link">Profile</a>
</li>
<li class="nav-item">

<a href="{% url 'logout' %}" class="nav-link">Logout</a>
</li>
{% else %}
<li class="nav-item">

<a href="{% url 'login' %}" class="nav-link">Login</a>
</li>
<li class="nav-item">

<a href="{% url 'register' %}" class="nav-link">Register</a>
</li>
{% endif %}

</ul>
</div>

</div>
</nav>

</header>

Code 64 financeblog\blog\templates\blog\base.html
 

We’ve only added one new link, but just for simplicity’s sake and so you
know where to put the link, we are showing the full header tag. Your navbar



should now have a minimalistic looking “Write a Blog” button.
 

Figure 70  Availability of the button "Write a blog."
 



ADVICE
Our website is complete. Users can register, upload images and

descriptions about themselves. Users can post blogs and update/delete their
own blogs. They cannot update/delete blogs of other users.

It’s time we add the advice section. We will now add a feature so users
can post a question, and others can provide their advice. We will also look at
how to create a REST API using the Django Rest Framework.
 

Advice Application
You know the drill, close the development server and create a new

application by the name of advice. Before you read any further, if you are
sitting in front of your Machine, try and do it yourself. Use the “help”
command in “python manage.py” if necessary.

Terminal
 

(MyProject) E:\MyProject\financeblog>python manage.py startapp advice

Make sure to add it to the INSTALLED_APPS setting in the settings.py
file inside the financeblog directory:
 

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'blog',
'profiles',
'crispy_forms',
'advice'
]



Question and Answer Schema
Our advice applications will have two models, Question and Advice.

There will be a one-to-many relation between the two, i.e. a question can
have much advice, but advice can only belong to a single question.
 

Figure 71 One to Many relationships between question and advice
 

Our Question and Advice models will also share a one-to-many relation
with the User model. Open the models.py file of the advice application and
add the following code:
 

from django.db import models
from django.contrib.auth.models import User
from django.utils import timezone
from django.urls import reverse

class Question(models.Model):



title = models.CharField(max_length=500)
author = models.ForeignKey(User, on_delete=models.CASCADE)
date_published = models.DateTimeField(default=timezone.now)

def __str__(self):
return self.title

class Advice(models.Model):
content = models.TextField()
author = models.ForeignKey(User, on_delete=models.CASCADE)
question = models.ForeignKey(Question, on_delete=models.CASCADE)
date_published = models.DateTimeField(default=timezone.now)

def __str__(self):
return f"Advice by {self.author.username}"

 

Code 65 financeblog\profiles\models.py

Let’s go over the the field Question model first.
 

title: It is a CharField with a max_length of 500.
author: It is a ForeignKey which means that question shares a

one-to-many relation with the User model. Through
on_delete=models.CASCADE, we are ensuring that in case the
user is deleted, the question gets deleted too.

date_published: It is a DateTimeField, and we are setting it
defaults to timezone.now.Upon creation of an instance of
Question, the attribute will automatically be set to the current time.

Lastly, we are returning the title of the question through the
__str__ method.

Fields of the Advice model:
 

content: It is of type TextField. This is the body of the answer.
author: It is the same as the author field on the Question

model.
question: We are defining a ForeignKey(one-to-many) relation



between the Question and the Answer. The
on_delete=models.CASCADE means that in case a question is
deleted, we also want to delete the answer associated with that
question.

date_published: It is a DateTimeField, the same as on our
Question model.

Lastly, we are returning the name of the user through the
__str__ method.

Our Schema is written down. It it isn’t reflected in the Database though.
Remember, in order for these fields to go from Python Code to SQL Fields
inside a PostgreSQL Server, we need to generate and run the migrations.

Terminal
 

(MyProject) E:\MyProject\financeblog>python manage.py makemigrations
Migrations for 'advice':

advice\migrations\0001_initial.py
- Create model Question
- Create model Advice

Terminal
 

(MyProject) E:\MyProject\financeblog>python manage.py migrate
Operations to perform:

Apply all migrations: admin, advice, auth, blog, contenttypes, profiles, sessions
Running migrations:

Applying advice.0001_initial... OK

Registering Models in the Admin site

Open the admin.py file inside the advice application and register the
Question and Advice model we just created. If your site is going to have a
lot of Models and you want them All to be in the Admin Panel, you might as
well write a simple Python script, that will import all Classes from the
models.py files and pass them into admin.site.register as Array.
 

from django.contrib import admin
from .models import Question, Advice
admin.site.register(Question)
admin.site.register(Advice)



Code 66 financeblog\profiles\admin.py
 

You can also pass a list of Models to the admin.site.register(). Open the
admin site at http://localhost:8000/admin, and you should now see the
Question and Advice.
 

Figure 72 Question and advice view in Admin side

You can try adding or deleting the Question and Advice instances. We
will now begin creating class-based generic views for the Question model.

Views
Question Create View

Let’s start by creating the create view of our Question model. Add the
following code to the views.py file of the advice application:
 

from django.views import generic

http://localhost:8000/admin


from django.contrib.auth.mixins import LoginRequiredMixin
from django.contrib.messages.views import SuccessMessageMixin
from .models import Question

class QuestionCreateView(LoginRequiredMixin, SuccessMessageMixin,
generic.CreateView):

model = Question
fields = ['title']
success_message  = "Question Created Successfully!"

def form_valid(self, form):
form.instance.author = self.request.user
return super().form_valid(form)

Code 67 financeblog\profiles\views.py

We have created a view called QuestionCreateView that extends from
CreateView generic view. It is the same as our BlogCreateView. We are
passing the field title in the fields attribute. We are also using
LoginRequriedMixin and SuccessMessageMixin. There is nothing new
here.
Let’s create the URL pattern for our QuestionCreateView.

First create the urls.py file inside the advice application and add the
following code to it:
 

from django.urls import path
from . import views
urlpatterns = [

path('create/', views.QuestionCreateView.as_view(), name="question_create"),
]

Code 68 financeblog\financeblog\urls.py
 

Now let’s add the URL patterns of our advice application inside the
urls.py file of the project. Add the following pattern inside the URL patterns
list in the urls.py file of financeblog directory:
 

path('questions/', include('advice.urls'))



It means our QuestionCreateView view will be available under the path
“questions/create”. We have linked the urls.py file of our advice application
with the URL patterns of the project. As per the naming convention of the
generic class-based views, QuestionCreateView will look for its template
under “advice/question_form.html”.

Let’s start by creating the directories for the templates. Inside the advice
application, create a directory called templates, and inside the templates
directory create a directory called advice. Inside the advice directory create a
file called question_form.html. After making the changes, the templates
directory of the advice application should have the following directory
structure:
 

Add the following code to question_form.html:
 

{% extends "blog/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="landing bg-dark">

<div class="container">
<div class="row align-items-center justify-content-center">

<div class="col-sm-12 col-lg-6 text-center">
<h1 class="text-white font-weight-bold display-3 mb-3">Have a Question?</h1>

</div>
</div>

</div>
</div>
<div class="container bg-light mt-n5 p-5 rounded ">

<div class="row">
<div class="col-12">

<form method="POST">
{% csrf_token %}
{{form|crispy}}



<div class="form-group">
<button class="btn btn-outline-dark">Submit</button>

</div>
</form>

</div>
</div>

</div>
{% endblock content %}

Code 69 financeblog\advice\templates\advice\question_form.html
 

This code is the same as our blog_form.html template. We’ve just copied
and pasted that same code. The only thing we’ve changed is the heading
which now says, “Have a question?”. Let’s test it by visiting
http://localhost:8000/questions/create.
 

Figure 73 Question submission form
 

http://localhost:8000/questions/create


Figure 74 Error from the Question Model
 

This error was expected as we’ve not created the get_absolute_url
method on the Question model yet. Our question was saved successfully, and
you can verify it through the admin site.
 



Figure 75 Question generated in the admin side

Since we don’t have a detailed view of the Question model yet, we will
postpone creating the get_absolute_url when we create the detail view.

Question Update View

We will not be creating an updated view of the questions. Suppose a user
posted a question and others offer their advice. After some users have posted
their advice, the question's original poster updates the question so now. It is
asking something entirely different. The answers provided on the question
page will not make any sense. Therefore, we will not be creating an update
page for the question. 

The admin will still be able to make changes through the admin site.
Besides, you have bravely made it until this Chapter. So you know very well
how to create your own (generic) Update View.
 

Question Delete View

Inside views.py of the advice application, add the following import:
 

from django.contrib import messages

Now add the following code:

class QuestionDeleteView(LoginRequiredMixin, UserPassesTestMixin,
generic.DeleteView):

model = Question
success_message  = "Question Deleted Successfully!"
success_url = "/questions"

def test_func(self):
question = self.get_object()
if self.request.user == question.author:

return True



else:
return False

def delete(self, request, *args, **kwargs):
messages.success(self.request, self.success_message)
return super(QuestionDeleteView, self).delete(request, *args, **kwargs)

Code 70 financeblog\advice\views.py

This view is the same as our BlogDeleteView. The only difference is that
we are now passing the Question model. Using the UserPassesTestMixin,
we are ensuring that only the author of the question can delete it. Note that
we are redirecting to a path “/questions” which is where we will list our
questions. It currently doesn’t exist to get a 404 page after you delete a
question and are redirected.

Let’s create a URL pattern for our QuestionDeleteView. Open the urls.py
file of the advice application and add the following URL pattern to the
urlpatterns list:
 

path('<int:pk>/delete', views.QuestionDeleteView.as_view(), name="question_delete"),

Our QuestionDeleteView will look for a template by the name
question_confirm_delete.html. Let’s add it. Inside the templates>advice
directory of the advice application, add a file called
question_confirm_delete.html  and add the following markup to it:
 

{% extends "blog/base.html" %}
{% load crispy_forms_tags %}
{% block content %}
<div class="container bg-light p-5 mt-5 rounded ">

<div class="row">
<div class="col-12">

<h2>Are you sure you want to delete the question "<strong>{{object.title}}</strong>"?
</h2>

<form method="POST">
{% csrf_token %}
<div class="form-group">

<button class="btn btn-danger">Yes please.</button>
<a class="btn btn-info" href="#">No, take me back</a>



</div>
</form>

</div>
</div>

</div>
{% endblock content %}

Code 71 financeblog\advice\templates\advice\question_confirm_delete.html
 

Again, we’ve just copy-pasted the blog_confirm_delete.html template.
Note that the “No, take me back” link doesn’t take you anywhere as we have
yet to create the detail page of the question.
 

Figure 76 Delete view of the questions

Question Detail View

If you remember, the generic detail View is among the most complex and
hard to remember views. Add the following code to the views.py file of the
advice application.
 



class QuestionDetailView(generic.DetailView):
model = Question

Open urls.py file of the advice application. Add the following URL
pattern to the urlpatterns list:
 

path('<int:pk>/', views.QuestionDetailView.as_view(), name="question_detail"),

By naming convention, QuestionDetailView will look for its template
under “advice/question_detail.html”. Inside the templates>advice directory
of the advice application, create a file called question_detail.html. Insert the
following code.
 

{% extends "blog/base.html" %}
{% block content %}
<div class="container blog bg-light p-5 mt-5 rounded">

<div class="row">
<div class="col-3 text-center">

<a class="mugshot-container mb-1" href="{% url 'profile' question.author.pk %}">
<div class="mugshot-img mb-2" style="background-

image:url({{question.author.profile.image.url}})"></div>
<span>{{question.author.username}}</span>

</a>
<small class="text-muted">{{question.date_published|date:"d/m/Y h:i a"}}</small>

</div>
<div class="col-9 question-information pb-1">

<div class="question">
<div class="question-mark">

<span>Q:</span>
</div>
<div class="question-content">

<h3 class="mb-0">{{question.title}}</h3>

</div>
</div>
{% if request.user == question.author %}
<div class="pl-2">

<a href="{% url 'question_delete' question.pk %}" class="btn btn-sm btn-danger">
Delete</a>

</div>
{% endif %}

</div>
</div>

</div>
{% endblock content %}



Code 72 financeblog\advice\templates\advice\question_detail.html
 

This template is very similar to the blog_detail.html. We have changed
some styling here and there and are displaying the question title,
date_publsihed, and the author's information. We’ve also added the delete
button, which links to the delete page of this question. Note that it will only
be shown if the current logged in user is the author of the question. Open
http://localhost:8000/questions/1.
 

Figure 77 Single question view
 

Let’s add a link for this view inside our question_confirm_delete.html.
Open question_confirm_delete.html and find where it says “No, take me
back”.
 

<a class="btn btn-info" href="#">No, take me back</a>

Change the href, so it now points to our detail page:
 

<a class="btn btn-info" href="{% url 'question_detail' question.pk %}">No, take me back</a>

http://localhost:8000/questions/1


Code 73 financeblog\advice\templates\advice\question_confirm_delete.html
 

Let’s also create the get_absolute_url method now that we have a detail
page for the question model. Open the models.py file of  the advice
application and the following method to the Question class:
 

def get_absolute_url(self):
return reverse("question_detail", kwargs={'pk': self.pk})

Code 74 financeblog\advice\models.py
 

We are creating the URL using the reverse function. Creating a new
question should redirect us to its detail page now.
 

Question List View

Open views.py file of the advice application and add the following code:
 

class QuestionListView(generic.ListView):
model = Question
paginate_by = 3
ordering = ['-date_published']

Code 75 financeblog\advice\views.py
 

We have created the QuestionListView by extending from the generic
ListView. Just like we did in BlogListView, we are also adding the
pagination and ordering attributes to the QuestionListView. Open the
urls.py file of the advice application and add the following URL pattern to
the URL patterns list.

path('',views.QuestionListView.as_view(),name="question_list"),

Our QuestionListView view will be available under the “questions/”



path. It will look for a template by the name of “question_list.html”.  Add a
file called question_list.html to the templates>advice directory inside the
advice application and insert the following code.
 

{% extends "blog/base.html" %}
{% block content %}
<div class="landing bg-dark">

<div class="container">
<div class="row align-items-center justify-content-center">

<div class="col-sm-12 col-lg-6 text-center">
<h1 class="text-white font-weight-bold display-3 mb-3">Help others succeed in

finance.</h1>
</div>

</div>
</div>

</div>
<div class="container p-5 rounded ">

{% if object_list.count > 0 %}
{% for question in object_list %}
<div class="row blog mb-5">

<div class="col-lg-2 col-sm-12 text-center">
<a class="mugshot-container mb-1" href="{% url 'profile' question.author.pk %}">

<div class="mugshot-img mb-2" style="background-
image:url({{question.author.profile.image.url}})"></div>

<span>{{question.author.username}}</span>
</a>
<small class="text-muted">{{question.date_published|date:"d/m/Y h:i a"}}</small>

</div>
<div class="col-lg-10 col-sm-12">

<div class="blog-information">
<h3 class="font-weight-bold mb-3">{{question.title}}</h3>
<a href="{% url 'question_detail' question.pk %}" class="font-weight-bold mb-3 d-

inline-block">
Read Thread

</a>
<div class="update-edit">

{% if request.user.is_authenticated and request.user == question.author  %}
<a class="btn btn-sm btn-danger" href="{% url 'question_delete' question.pk

%}">Delete</a>
{% endif %}

</div>
</div>

</div>
</div>
{% endfor %}
<div class="pagination">

<span class="step-links">



{% if page_obj.has_previous %}
<div class="step-divider">

<a href="?page=1">« first</a>
<a href="?page={{ page_obj.previous_page_number }}">previous</a>

</div>
{% endif %}
<span class="current">

Page {{ page_obj.number }} of {{ page_obj.paginator.num_pages }}.
</span>
{% if page_obj.has_next %}
<div class="step-divider">

<a href="?page={{ page_obj.next_page_number }}">next</a>
<a href="?page={{ page_obj.paginator.num_pages }}">last »</a>

</div>
{% endif %}

</span>
</div>
{% else %}
<h2 class="text-muted text-center">No queries posted yet...</h2>
<p class="mt-3 h3 text-muted text-center">Ask a question? <a href="{% url 'question_create'

%}">Click here</a></p>
{% endif %}

</div>
{% endblock content %}

Code 76 financeblog\blog\templates\blog\blog_list.html

Again, this code layout is the same as our blog_list.html template. We’ve
only changed the variables to match the question. We’ve changed a few
things, i.e. changed the main heading and changed the question title's size.
Everything else, as you can see, is pretty much boilerplate. Meaning, you can
use it for other List Views - simply adjust the wording. Open
http://localhost:8000/questions.
 

http://localhost:8000/questions


Figure 78 Word adjustment
 

Let’s update the navigation bar while we are at it. Open the base.html file
inside the templates > blog directory of the blog application and find the
HTML header code. Find the last </li>  and {% endif %} tag. Insert another
link after the endif-condition.
 

<header>
...
{% endif %}
<li class="nav-item">

<a href="{% url 'question_list' %}" class="nav-link">Browse Questions</a>
</li>
...
</header>

Code 77 financeblog\blog\templates\blog\base.html

We have added two new links to create a question and one link that takes
you to the QuestionListView page.
 



Figure 79 New button added for asking a question

Testing Question Views
Let’s create the views of the Question models. Open

http://localhost:8000/questions/create
 

http://localhost:8000/questions/create


Figure 80 View for the question model

After creating the question, you should be redirected to its detail page.
 

Figure 81 Question created successfully



Let’s delete this question.
 

Figure 82 Question delete view
 

If you press the “No, Take me back” button, you’ll be taken back to the
detail page. If you delete the question, you will be redirected to the question
list page.
 



Figure 83 Question deleted successfully



REST API - DRF

Decoupling Backend & Frontend

Introduction

Say, for our web app, you build a mobile application. You want to display
all the questions on our website, but how will you get data from the web
application? The mobile application and web application are two different
applications and are not connected in any way. You can scrap the site. You
can directly connect with the database but will need to build an additional
backend for processing the data. These or several different methods which are
all hacky ways to get the data.

Enter REST APIs. We can create a REST API in our web application that
will return the questions on our web application in a JSON format. Let’s say
we created the API on the path “/questions/api/all”.

Now, suppose you perform an HTTP GET request against this endpoint.
In that case, it doesn’t matter if you are on a browser, or performing the
request through the curl terminal command, or performing the HTTP request
through AJAX. You will always get the data back in JSON format. This way,
we can expose our application's data straightforwardly, so it is available to
other platforms.
 



REST APIs allow us to build URL endpoints that will return or accept
data in a universal format, usually JSON. We will not go into the jargon as
REST is a topic of its own, but we will briefly explain it to give you an idea.
 

Our Use Case

We will create two views for the Advice model, allowing users to create
advice for a question and list all of the advice for a given question. Both
create and list views of advice will be displayed on the detail page of the
Question model. However, we don’t want to build these the traditional way.

Suppose you go to any modern website which has a comment system. In
that case, you will notice that your comment gets added without the page
reloading.

This creates a pleasant user experience as the page doesn’t reload, and the
user can keep doing what they were doing. You must also have noticed that
the comment section is loaded on some websites when you scroll down to it,
meaning it fetches data in real-time from the server. This instant feedback on
the action is very welcomed by users and is pretty much status quo today.

AJAX & Django Views



This is all done by performing HTTP requests through AJAX calls on the
page or, more specifically, the API. These HTTP requests are made to URL
endpoints accepting and returning data in JSON instead of HTML
documents. We need to build some kind of API on our web application that
will allow the user to retrieve the advice of a question in JSON format and
send JSON data to an Endpoint. This Endpoint will create the specified
advice for a particular question.
 

Django Rest Framework (DRF)
Why DRF?

To create REST APIs, we will utilize the Django REST Framework
(DRF). DRF allows us to implement REST in a Django project very quickly.
It comes with a set of valuable features we otherwise would have to
implement ourselves. It is used inside a Django Project, i.e., it doesn’t work
standalone. It offers various features such as views, generic views,
authentication, serialization, browsable API, and a lot more. 

It also comes with very in-depth documentation that covers every topic in
detail. We will only be scratching the DRF's surface in our project. It is a
complete framework dedicated to only creating REST APIs in Django.
 

Installing Django Rest Framework

Close the development server and install the Django rest framework.

Terminal
 

(MyProject) E:\MyProject\financeblog>pip install djangorestframework

Next, add it to the INSTALLED_APP setting in the settings.py file of
the project.

INSTALLED_APPS = [



'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'blog',
'profiles',
'crispy_forms',
'advice',
'rest_framework'
]

Creating Advice List View
Open views.py of the advice application and add the following imports.

 

from .models import Advice
from rest_framework.views import APIView
from rest_framework.response import Response
from rest_framework.reverse import reverse
from django.utils import formats

Code 78 financeblog\advice\views.py

Now we’ll create a View, similar to the Views we created earlier.

class AdviceListView(APIView):
def get(self, request, pk=None):

queryset = Advice.objects.all().filter(question_id=pk).order_by("-date_published")
data_to_return = []

for advice in queryset:
username = advice.author.username
user_url = request.build_absolute_uri(reverse('profile', args=[advice.author.pk]))
user_image = request.build_absolute_uri(advice.author.profile.image.url)
content = advice.content
date_published = formats.date_format(advice.date_published,

"SHORT_DATETIME_FORMAT")
instance = {

'username' : username,
'user_url': user_url,
'user_image': user_image,
'content': content,
'date_published': date_published



}
data_to_return.append(instance)

return Response(data_to_return)
 

Code 79 financeblog\advice\views.py

We are creating the AdviceListView view that extends from django-rest-
framework’s APIView. This view will respond to GET requests only. That is
why we only have a get method. If we want to perform actions on other
HTTP calls such as POST or DELETE to this view, we will have to create a
class method by the name of the HTTP request type, which will handle the
code of that scenario. 
 

We are passing three parameters to the get method, i.e., self, request, and
pk. Our view will get the pk parameter through the URL. Next, we have this
line of code.
 

queryset = Advice.objects.all().filter(question_id=pk).order_by("-date_published")

We are retrieving all the instances of the Advice model that belong to a
particular question. We are filtering that question by its id and passing the pk
parameter we received as the matching query. Next, we are ordering the
queryset result by the most recent advice published through the
date_published field.

We are creating an empty list by the name data_to_return and looping
over the queryset we just made. We are then retrieving some data, and these
are:
 

username = advice.author.username

We are storing the username of the author of the advice. 
 

user_url = request.build_absolute_uri(reverse('profile', args=[advice.author.pk]))



We are creating a URL for the profile of the author with the reverse
method. We are passing ‘profile’, which is the name of the user’s profile
URL. We are passing it the pk of the author of the advice as well so it knows
which user we are talking about. Lastly, we are wrapping the reverse method
inside the build_absolute_uri method, which will create the full absolute URL
as reverse only creates a partial relative URL.
 

user_image = request.build_absolute_uri(advice.author.profile.image.url)

Here we are creating the URL link of the author’s profile image. We are
building it the same way we did in the previous step.
 

content = advice.content

We are storing the content of the advice instance.
 

date_published = formats.date_format(advice.date_published, "SHORT_DATETIME_FORMAT")

We are storing the date_published field of the advice instance but by
default, it will return in a different format. We are wrapping it inside the
date_format function and specifying that we want the
‘SHORT_DATETIME_FORMAT’ format.
 

instance = {
'username' : username,
'user_url': user_url,
'user_image': user_image,
'content': content,
'date_published': date_published

}

In this piece of code, we are creating an instance of the advice we want to
send back through the URL. It is a python dictionary, and it holds all the
variables we just created.
 

data_to_return.append(instance)  



Lastly, we are appending the instance dictionary to the data_to_return
list we created earlier. Remember that we were looping over the queryset, so
it will create this instance for all the advice the queryset has.
 

return Response(data_to_return)

Finally, we are sending the data back through the Response method. Note
that this Response method will automatically convert our python dictionary
to a JSON object.
 

Advice List View URL Pattern

Let’s create a URL pattern for our AdviceListView. Open the urls.py file
of the advice application and add the following URL pattern to the URL
patterns list.
 

path('api/<int:pk>', views.AdviceListView.as_view()),  

Code 80 financeblog\advice\urls.py

Remember, our view was using a pk for querying a specific question. It
will get that parameter from our URL.

Advice List View Testing

Visit the Question section in the admin site and add a new question.
 



Figure 84 Question section in the admin site

Let’s also add a few advice to this question through the admin site.
 

Figure 85 Adding new advice



Note the id of the question you just created and visit
http://localhost:8000/questions/api/3. Note that “3” here refers to the pk of
the question we just created.
 

Figure 86 Django template provided by rest-framework

This template is provided by the django-rest-framework and is very good
for development purposes because we can interact with the API graphically.
You will want to disable this in production to only show raw JSON data.

You can see that our AdviceListView view is returning the data
correctly. It is in JSON format. We are sending the username, user_image
and user_url because we want to display the information of the advice author
as well.

Note that this is a public API, meaning anyone can access this data. We
don’t want to protect this route as we want unauthenticated users to also be
able to read comments on our web application.

http://localhost:8000/questions/api/3


Advice Create Serializer
What is Serializer?

Serializers convert data from JSON to python objects(called serializing)
and from python objects to JSON(called de-serializing).
 

Figure 87 Serialization De-Serialization mechanism
 

They work very similarly to Django forms as we create our serializers by
inheriting from either Serializer or ModelSerializer classes. We then define
attributes on our serializer class and specify what sort of data that attribute
should expect, i.e., whether it will be an email or a CharField etc.
 

The only difference between the Serializer and ModelSerializer class is
that ModelSerializer class allows us to build a serializer based on a model
that we pass it, kind of like we did in forms extending from ModelForm.

Create Serializer

Create a file called serializers.py inside the advice application and add
the following code to it:
 

from rest_framework import serializers
from .models import Advice

class AdviceCreateSerializer(serializers.ModelSerializer):
class Meta:

model = Advice
fields = ['content']



Code 81 financeblog\advice\serializers.py

This serializer will expect one field only, content. The advice model also
has the author, question, and date_published fields, but we will handle
those in the view. 
 

Creating Advice Create View
Open the views.py file of the advice application and add the following

imports. 
 

from rest_framework import status
from .serializers import AdviceCreateSerializer

Code 82 financeblog\advice\views.py
 

Next, add the following code for the view: 
 

class AdviceCreateView(APIView):
def post(self, request, pk=None):

if request.user.is_authenticated:
serializer = AdviceCreateSerializer(data=request.data)
if serializer.is_valid():

user = request.user
try:

question = Question.objects.get(pk=pk)
except Question.DoesNotExist:

return Response({"error" : "Question does not
exist!"},status=status.HTTP_400_BAD_REQUEST)

advice = Advice.objects.create(content=serializer.validated_data["content"],
author=user , question=question)

advice.save()
data_to_return = {

"username": advice.author.username,
"user_url": reverse('profile', args=[advice.author.pk], request=request),
"user_image":request.build_absolute_uri(advice.author.profile.image.url),
"content": advice.content,
"date_published":formats.date_format(advice.date_published,

"SHORT_DATETIME_FORMAT")
}



return Response(data_to_return, status=status.HTTP_201_CREATED)
else:

return Response(status=status.HTTP_400_BAD_REQUEST)    
else:

return Response(status.HTTP_401_UNAUTHORIZED)

Code 83 financeblog\advice\views.py

We have created a view called AdviceCreatView that extends from the
APIView. Notice that we are now defining a post method, not a get. That is
because this view will only accept POST HTTP requests. We are passing the
pk parameter to the view, and we will get this from the URL. 

Inside the view body, The first thing we check is whether the user posting
data is authenticated or not. If the user is not logged in, we are returning an
HTTP 401 error.

We have created an instance of the AdviceCreateSerializer and are
passing the data from the request.
 

serializer = AdviceCreateSerializer(data=request.data)

Next, we are calling the is_valid and checking if the user-submitted data
is valid or not. If the data is not valid, we are returning an HTTP 404 error. If
the form is valid, we execute the following code.
 

user = request.user
try:

question = Question.objects.get(pk=pk)
except Question.DoesNotExist:

return Response({"error" : "Question does not exist!"},
status=status.HTTP_400_BAD_REQUEST)

advice = Advice.objects.create(content=serializer.validated_data["content"], author=user ,
question=question)

advice.save()

We are storing the currently logged-in user in the user variable. Next, we
are fetching an instance of the Question model through the pk parameter and



storing it in the question variable.

We have added a try-catch block here. Suppose the pk provided by the
URL is invalid, and no question exists matching that pk. It will raise a
DoesNotExist exception. We are catching the exception and returning a 400
bad request.

Then we are creating a new instance of the Advice model. We pass it the
content field received from the user-submitted data after it’s been validated,
user and question. Lastly, we are calling the save method, which will create
the instance for us. After we save the instance, we return a JSON or Dict
Object.
 

data_to_return = {
"username": advice.author.username,
"user_url": reverse('profile', args=[advice.author.pk], request=request),
"user_image":request.build_absolute_uri(advice.author.profile.image.url),
"content": advice.content,
"date_published":formats.date_format(advice.date_published,

"SHORT_DATETIME_FORMAT")
}

return Response(data_to_return, status=status.HTTP_201_CREATED)

We are creating an object called data_to_return and passing it the newly
created advice data and user information. This is the same information we
were returning in our list view. The only difference is that now we are
returning a single object, the newly created advice instance.

One last thing we should mention here is that our create view is a
protected route. It will only work if the user is logged in. We usually use
token-based authentication with REST APIs, but that is a separate topic of its
own. Currently, we are relying on Django's default session-based
authentication system to authenticate ourselves. This is suitable for us as we
will only be performing AJAX calls right from our web application.
 

Advice Create View URL Pattern



Open the urls.py file of the advice application and add the following
URL pattern to the URL patterns list and open
http://localhost:8000/questions/api/3/create.
 

path('api/<int:pk>/create', views.AdviceCreateView.as_view()),
 

Figure 88 Without getting method view
 

You can see it says, “\GET not allowed”. We didn’t specify the get
method on our view, and the reason it shows us this message because we
performed a GET request when we opened this page. You can see the form
below. Let’s test our API through this form. Remember, we only need to send
a single attribute, i.e., content.
 

http://localhost:8000/questions/api/3/create


Figure 89 Single attribute view

We’ve added the following JSON in the form. It has a content key and a
message as the value. Remember, our API accepts JSON data, and this is the
only field our serializer expects. You can send other fields, it wouldn’t make
a difference, but this field has to be sent because we would get an error
otherwise.

Now hit submit, and it will create a new advice instance. The view will
fetch a question by the pk we provide in the URL and set that to the advice
instance’s question field. It will set the currently logged-in user as the author
of the advice. It will set the content we sent through the form as the content
of the advice. Finally, it will create a new instance.
 

Figure 90 New instance view
 



After creating successfully, we will get the newly created advice back.
Now visit the AdviceListView URL, and you should see the advice we just
created displayed as JSON Object.
 

Figure 91 All advice list
 

Now that we have created the APIs, we will now access these through on-
page javascript to retrieve advice and create new advice on the Question
model's detail page.
 

Embed Advices
We will now use the AdviceListVIew API and display all the advices of

a question on the detail page of questions. Open the question_detail.html
template inside the templates>advice directory of the advice application.
Replace the existing code with the code below.
 

{% extends "blog/base.html" %}
{% block content %}
<div class="container blog bg-light p-5 mt-5 rounded">

<div class="row">
<div class="col-3 text-center">

<a class="mugshot-container mb-1" href="{% url 'profile' question.author.pk %}">
<div class="mugshot-img mb-2" style="background-

image:url({{question.author.profile.image.url}})"></div>
<span>{{question.author.username}}</span>

</a>



<small class="text-muted">{{question.date_published|date:"d/m/Y h:i a"}}</small>
</div>
<div class="col-9 question-information pb-1">

<div class="question">
<div class="question-mark">

<span>Q:</span>
</div>
<div class="question-content">

<h3 class="mb-0">{{question.title}}</h3>
</div>

</div>
{% if request.user == question.author %}
<div class="pl-2">

<a href="{% url 'question_delete' question.pk %}" class="btn btn-sm btn-danger">
Delete</a>

</div>
{% endif %}

</div>
</div>
<div class="row mt-5">

<div class="col-12">
<div class="question-detail-container">

<div class="answers-container">
<span id="answer-above"></span>
<p class="loading-comment animate text-center">loading advices...</p>
{% if request.user.is_authenticated %}
<form class="post-answer-form">

<div class="form-group">
<label for="answer" class="answer-heading">Post an advice</label>
<textarea class="form-control advice-form mb-2" name="answer" id="answer"

rows="5"></textarea>
<button class="btn btn-primary" type="submit" id="post-

comment">Submit</button>
</div>
<p class="text-danger font-weight-bold" id="form-error"></p>

</form>
{% else %}
<p class="answer-heading"><a href="{% url 'login' %}">Login</a> to post an

advice</p>
{% endif %}

</div>
</div>

</div>
</div>

</div>
{% endblock content %}

Code 84 financeblog\advice\templates\advice\question_detail.html



The template is the same as before except for a few changes. We have
now added a form that allows users to post advice to the question. We have
also added a floating message that says, “loading advice...”.

Note that the form and the floating messages are pure HTML and CSS.
We have yet to add any javascript to make them functional. Also, note that
we are performing a check to see if the user is logged in or not and only then
displaying the form. Take a look at our detail page (seen as guest).
 

Figure 92 Question detail page when the user logged out
 



Figure 93 Question detail page when the user logged in
 

Let’s add the javascript code to fetch this question's advice but first, let’s
open our base.html template and create a block template tag for js. Open the
base.html template inside the templates>blog directory of the blog
application and add the following code after the last script tag.
 

{% block js %}
{% endblock js %}

After  making this change, your base.html template should have the
rough structure of the following code snippet.
 

{% load static %}

…

{% block content %}
{% endblock content %}

…



{% block js %}
{% endblock js %}

</body>
</html>

Code 85 financeblog\blog\templates\blog\base.html

The reason we are creating a new block template tag is that we will be
using a Technology called JQuery. Since the content block comes before the
script tags in the HTML document, our jquery code will throw errors because
we are trying to use something that hasn’t been loaded yet. Remember,
HTML documents are read from top to bottom.

Now go back to the question_detail.html template and outside the
content block and create a new js block. We are going to code a simple JS
Method that will fetch data from our REST API and insert “live” into our
HTML Page, that has already been loaded.
 

{% block js %}

<script>
$(document).ready(function(){

// This function runs once and fetches the advices of this specific question.
function fetchAdvicesUpdateUI(){

// Fetching Data from our own REST API
fetch("/questions/api/{{question.id}}")
.then(res => res.json())
.then(data => {

let answers = []
// Loop over the data returned from the api.
for(var i = 0; i < data.length; i ++){

// Constructing the markup from the data returned from API.
var answer = [

"<div class='answer'><div class='answer-by'>",
"<a class='mugshot-container mb-1' href='",
data[i].user_url,
"'> <div class='mugshot-img-sm mb-2' style='background-image:url(",
data[i].user_image,
")'></div><span>",
data[i].username,



"</span></a> <small class='text-muted'>",
data[i].date_published,
"</small></div><div class='answer-content'> <p>",
data[i].content,
"</p></div></div>"

]
answers.push(answer.join(""))

}

if( answers.length < 1){
answers = ['<p class="no-answer">No answers posted to this thread yet!</p>']

} else{
answers.unshift('<h3 class="answer-heading" id="answer-here">Answers:</h3>')

}

// Loop over the advices array and push it to our html document.
for(var i = 0; i < answers.length; i++){

$("#answer-above").before(answers[i])
}

// Hide the loading advices message.
$(".loading-comment").css("display", "none")

})
}
// Load the advices once on page was loaded.
fetchAdvicesUpdateUI()

})
</script>

{% endblock js %}

Code 86 financeblog\advice\templates\advice\question_detail.html

This was much code so let’s go over it in detail. We have opened the js
block and have created a script tag inside it. We are using jquery’s ready
method to ensure that our code runs after the document has been fully loaded.
Next, we have created a method called fetchAdvicesUpdateUI which will be
responsible for calling the API and updating our page. 
 

fetch("/questions/api/{{question.id}}")
.then(res => res.json())
.then(data => {...//other code}

This fetch function is a built-in javascript function used to make HTTP



requests. We are requesting to “/question/api/{{question.id}}”, question.id
refers to the pk parameter our URL pattern expects. This will be used to
identify which question’s advice we need. This question will return us some
sort of response, and we are retrieving our JSON data through that response.

Next, we are using that data to display the advice on our page. Note that
we aren’t passing a full path to the fetch method because when we pass
partial paths like these, it assumes that we are talking about the current host.

We have heavily commented on the Jquery code to understand what it is
doing. Still, just to give you the gist, after the API has returned the advice
data, we are manipulating the HTML DOM and creating the structure of our
advice. Next, we are adding that structure to the page and hiding the
“...loading advices” message. Now when you open the detail page of a
question, you should see its advice being fetched live.
 

Figure 94 Live fetching of advice

Create Advice on Question Detail Page



Now that our advices are being fetched and we are displaying them
successfully, it’s time to set up our form so it sends data to the
AdviceCreateView API and creates advice for us. Our AdviceCreateView
API returns the newly created advice, and we will add that to our page.

Before we add the code, let’s briefly talk about authentication. By default,
Django uses session-based authentication. When we log in, the server creates
a session, stores it in the database, and attaches a session id to the browser
cookie. When we make further requests to the server, we send the session id
with the request, and the server uses that to authenticate us. The HTTP
protocol is stateless, meaning if we don’t send the session cookie with the
request, the server will not be able to recognize us and treat us as logged-out
users. 

We usually use Token Based authentication in the case of REST APIs,
but for our use case where we will only be using the API on our web
application through AJAX, Django’s default session authentication is more
than enough for our current setup. Append the following javascript code to
the script tag of the question_detail.html template.
 

// Whenever form is submitted, execute following method.
$(".post-answer-form").on("submit", function (e) {

e.preventDefault()
// Pass the content from the input box
postAdvice($('.advice-form').val())

})

function postAdvice(content) {
// Check if answer was empty and return if true.
if (content.length === 0) {

$("#form-error").text("Can't be empty!")
$("#form-error").css("display", "block")
return;

}
$("#form-error").css("display", "none")
// Hide button interaction
$("#post-comment").text("Wait...").attr('disabled', true);

// Construct data to send to our REST API
var mydata = {



'content': content,
};

// Insert question-id and user-token for the POST request.
fetch('/questions/api/{{question.id}}/create', {

method: 'POST',
headers: {

'Content-Type': 'application/json',
// Get the csrf token.
'X-CSRFTOKEN': Cookies.get('csrftoken')

},
// data we want to send to api
body: JSON.stringify(mydata)

})
.then(res => res.json())
.then(data => {

// Constructing markup in array from data received.
var answer = [

"<div class='answer new-answer'><div class='answer-by'>",
"<a class='mugshot-container mb-1' href='",
data.user_url,
"'> <div class='mugshot-img-sm mb-2' style='background-image:url(",
data.user_image,
")'></div><span>",
data.username,
"</span></a> <small class='text-muted'>",
data.date_published,
"</small></div><div class='answer-content'> <p>",
data.content,
"</p></div></div>"

]

// If answers exist, post before the latest answer (at the top).
if ($(".answer").length > 0) {

$("#answer-here").after(answer.join(''));
} else {

// If this is the first anser, this will be posted before the identifier.
$("#answer-above").after('<h3 class="answer-heading" id="answer-here">Answers:

</h3>')
$("#answer-here").after(answer.join(''))
$(".no-answer").css("display", "none")

}
// Updating button to 'clickable' and changing text back to "Submit".
$("#post-comment").text("Submit").attr('disabled', false);
// Clear the input field.
$('.advice-form').val("");
// Scroll to answer we just saved and the api returned.
$("html, body").animate({

scrollTop: $("#answer-here").offset().top



}, 500);
// Unfocus the submit button.
$("#post-comment").blur();

})
.catch(err => console.log(err))
}

 

Code 87 financeblog\advice\templates\advice\question_detail.html
 

We have prevented the default behaviour of the form on submit and are
running a function called postAdvice. To postAdvice we are passing the
contents of the text area where the user entered their advice.

After performing some checks on the user-submitted data, we are storing
it in an object my_data under the critical content. If you remember, our API
only expects a content field. This is where the magic happens.
 

fetch('/questions/api/{{question.id}}/create', {
method: 'POST',
headers: {

'Content-Type': 'application/json',
// we get the csrf token and attach it to our request
'X-CSRFTOKEN': Cookies.get('csrftoken')

},
// data we want to send to api

body:JSON.stringify(mydata)
})
.then(res => res.json())
.then(data => {//...other code}

 

This piece of JS Code sends a POST-Request to the REST API path
“/questions/api/{{question.pk}}/create”. Inside the headers, we are telling
the Backend that our Request Body we will be of type JSON. We have to
pass the csrftoken to identify ourself, and it’ll be used to authenticate the
incoming request at the view.

We are fetching the csrftoken from the browser using the cookies library
we imported in our base.html in the second chapter. Remember, this cookie



was sent to our browser by the Server (Django). Lastly, we are attaching our
my_data object after converting it to JSON string into the request's body.

When we perform the request, the API will return the newly created
advice instance to us, and we are then handling that data to display the advice
on the page. You can read the comments of the code to see how we are
displaying the returned data.
 

Figure 95 Advice submitting
 

Upon pressing the submit button, you will be taken to the top of the page,
and your newly created advice will be shown to you in a nice animation.
 



Figure 96 Newly created advice view

Submitting an empty advice, will return an error. As we can see, our
advices are getting saved successfully and we can see them appear on the
page without the page even reloading. Your question_detail.html template
should look like this after adding the js for the list and create API.
 

{% extends "blog/base.html" %}

{% block content %}
...
{% endblock content %}

{% block js %}
<script>

$(document).ready(function () {
function fetchAdvicesUpdateUI() {

...
}
//Load the advices once on page load.
fetchAdvicesUpdateUI()

//whenever form is submitted, we run this function.
$(".post-answer-form").on("submit", function (e) {

...



})

function postAdvice(content) {
...

}
})

</script>
{% endblock js %}

Code 88 financeblog\advice\templates\advice\question_detail.html
 

That is it. You’ve been exposed to a pretty wide (but still deep) set of
tools in the Django Universe. The next thing we will do is show our
Application to the world. Sell you App, your Idea, your Product, or whatever
it is that you will be developing with Django 3.



Cloud Deploy

CLOUD DEPLOY

What is serverless deployment?
In a traditional hosting strategy, we buy a hosting from a hosting service

provider, which is usually a linux machine. We then have to configure it
ourselves to run our application. For example we have to install python,
django, manage proxies and load balancers etc. Also note that we get a fixed
amount of resources(RAM, CPU) core in the hosting package that we buy.

This model has a few problems. First is that you have to pay a fixed
amount no matter if the work you are doing doesn’t justify the costs at all.
Second is it gets harder if we want to scale the application. A sudden increase
in traffic or the like can very likely shut down your server unless you upgrade
your hosting plan.

With serverless, we don’t have to manage the servers ourselves. All we
do is that we deploy our code and the serverless service provider manages it
for us. Do note that there are still servers involved, it’s just that managing
them have been abstracted away from us. One more plus point of a serverless
hosting is that you only pay for the amount of time your application is ran.
The actual specifics are different but the idea is generally the same. For
example, one serverless service provider might charge you based per request
made to the server or others might charge you some minuscle amount of
money for every GB of memory used etc.

That is why, for this guide, we will deploy our application to a serverless
hosting.



Google Cloud Run + Docker
We will be using Google Cloud run for this purpose as well as docker.

We’ll use a variety of backing services with google cloud run to ensure our
application works correctly. Which backing services you might ask? Google
cloud run will only store and run your code. You still need a database to save
the data as well as some sort of space to store static files(css files, js files and
user uploaded images etc).

For these purposes we will use Google cloud SQL and  Google Cloud
storage. You can sign up for Google Cloud run and you will get $300 in
credit free when you provide your billing credentials. Don’t worry as you’ll
not be charged, this is just so they can keep spam at low. This free tier is
good enough for development and testing purposes so we will go with it.

What is Docker?
You might be wondering what Docker is. Docker is a way to sort of

containerize your application so it behaves the same way no matter which os
and machine you run it on.

In simple terms, Suppose you are working on a django application on a
linux machine with some version of python. Your friend wants to help with
your code but they are running a windows machine with a different python
version. Some problems might occur as you both try to run the same code and
you might get around it by using virtualenvs but it’s still very prone to error
and bugs.

Enter Docker. Docker will put all of your code in a container (think of it
as a virtual environment) and you can run it pretty much on any machine that
has docker installed on it. It doesn’t matter whether the other machine has
python or not, docker will internally take care of everything and reproduce
the same environment on each machine so the application behaves as
expected.



Think of Docker as Virtual Machines - but lightweight and fast as
compared to a virtual machine.

Installing Docker

If you haven’t installed Docker for the PostgreSQL Database, you will
need to do it now. Head over to https://www.docker.com/products/docker-
desktop and download Docker Desktop. You should choose the version for
your OS. The installation process will be mostly the same. After downloading
and opening the setup file.

It will download some packages and then ask for these components. The
first one is compulsory so check it and proceed to clicking the ok button. If
you’re on windows, you’ll probably get the following error while restarting
after the setup completes.

 

Since Windows doesn’t have a linux kernel by default, this error is
understandable. Follow the link, install all necessary dependencies and
return.

 

https://www.docker.com/products/docker-desktop


Setting up Google Cloud
With docker installed, we need to configure the backing services we’ll

need to run our project on google cloud run. First, head over to google cloud
console at https://console.cloud.google.com. If this is your first time opening
cloud console, you’ll probably be shown a welcome screen.

Select their  terms of service and continue. Next you should enable billing
for your cloud console by clcking the “Activate” button at the top right side
of the screen. As stated before, you’ll get $300 in credit which is more than
enough for our blogging application just for testing purposes. If in th future
this $300 credit does run out, google will prompt you to manually continute
to paying for services instead of automatically deducting money from your
account which is a big plus.

Setting up a google cloud project

With billing enabled, you now need to create a new project on the cloud
console. Click the “Select a project” link on the nav bar on the home screen

https://console.cloud.google.com


of google cloud console.
 



Under Project name, enter a name for your project and keep the Location
option as default. After creating the project, you’ll be redirected to the
Google Cloud Dashboard.
 



Great, your google cloud project has been created. If you can see, I called
my project “Django 3”. There is also a field called Project ID. Please keep
this field in mind as we’ll use it to identify this project when creating the
backing services.

Installing Cloud SDK

We’ll need google cloud sdk to be able to interact with cloud console
from our machine. Head over to https://cloud.google.com/sdk/docs/install
and download the version for your os. Since I’m on a windows machine, I’ll
download the windows version.

 

After downloading the setup, run the installer and click yourself through
it…you know the drill.

 

https://cloud.google.com/sdk/docs/install


If everything worked, you should see a prompt that will ask you log in
into your Google Cloud Account or Project.

 



Enter “y” and you’ll be redirected to your browser for authentication
purposes. Enter your credentials and you’ll be asked to provide permissions
to cloud sdk.
 



As you can see, my project django-3 is showing here. Since my project is
at number  “1”, I’ll enter that into the command prompt.

Setting up CloudSQL
Our django application uses a PostgresSql database. Remember, Cloud

run just runs our code, we still need a database separate from cloud run.
We’ll use Google’s CloudSQL. In your cloud console dashboard in your
current project, search for Google Cloud SQL.

 



Select “GO TO CLOUD SQL” and you’ll be redirected to another screen
where you’ll be asked to create a new instance. Make sure you are on the
right project by looking at the drop down next to “Google Cloud Platform”
link in the header. When you click “CREATE INSTANCE”, you’ll be taken
to another screen.

 

Since our Django 3 Application uses PostgresSQL database, we’ll select
PostgresSQL instance.



 

You’ll then be taken to a form for creating a PostgresSql instance. Note
that we are not creating a “database” yet, this is sort of like installing
PostgresSql on your machine.

In the “Instance ID” field, enter a name you want to use for this instance.
I’m calling mine “django-3-postgres-instance”. The password field is for
the default “postgres” user. Make sure that the password is a strong one.
Leave all other fields as they are and click create instance. If your instance
was created successfully, you’ll be redirected to the following page

 



Next click the “Databases” link on the side navigation bar and you’ll be
taken to a new page.

 

Create a new database by clicking the “CREATE DATABSE” button.
You’ll be prompted to select a name for your database. I’m calling my
database “django-3-postgres-database”. After creating your database



successfully, you’ll now see your newly created database listed here.
 

Next we need to create a User for our database. We’ll do this from the
coud console online shell. On your navigation bar at the top, there should be
a console icon on the right side

 



Inside the Terminal, enter the following command:

gcloud sql connect <your cloudsqlinstance name> --user postgres

Do note that you are to enter you instance name, not your database name.
We are creating a new user on our postgres instance. My instance name is
django-3-postgres-instance so my command will become.

gcloud sql connect django-3-postgres-instance –user postgres

You might be asked to enter your google credentials. Afterwards, you’ll
be asked to enter the password for the “postgres” superuser of your database



instance. Enter the password for your postgres user that you chose previously
while creating the PostgresSql instance and you’ll be given access to the
PostgresSql shell as shown in the image below.

 

Once you have access to the postgres shell, run the following command to
create a new user called Django.

CREATE USER test WITH PASSWORD ‘your_password_here’;

Make sure you replace the above string with your password. I’ve named
this user test, you can call it whatever you want. Finally, give this user all
rights on your database by running the following command.

GRANT ALL PRIVILEGES ON DATABASE ‘<your_database_name>’ TO test

Do note that we are now referencing the database name, not our
PostgresSql installation instance name. I named my database ‘django-3-
postgres-database’. Here’s the shell output. Great, Our postgres database is
ready to be utilized.

Cloud Storage bucket
Our database setup is complete. We now need to set up Cloud Storage



bucket which will hold all of our static files and user uploaded images. A
bucket is sort of a directory where you will store all of your files. We’ll be
storing all the django static files inside a such bucket.

As for why we need a separate place for storing static files, If you
remember, way earlier in the tutorial, django is not suitable for serving static
assets. Moreover, cloud run will only run the code and not store any files we
upload to a storage. That is where Cloud Storage comes into picture. There
are other options such as Amazon s3 buckets but we’ll use Google’s Cloud
Storage.

Head over to https://console.cloud.google.com/storage/browser. Click the
“Create Bucket” button to create a new bucket.  Follow the steps described in
the images attached below.

 

https://console.cloud.google.com/storage/browser






Give your bucket a unique name. I’ve called my bucket “django-3-
bucket”.Choose Fine-Grained as access control. I’ve left other fields as
default but I’ve still shown them in the images attached just to avoid any
confusions. If everything goes okay, you’ll be redirected to the following
screen

 



information in Secret Manager
We are finished setting the backing services. We’ll use these services in

our django project but linking them in our settings.py file is a serious security
flaw as it’ll be visible. We need to store the information regarding these
services inside a secret environment. Google Cloud’s Secret Manager is the
tool for this purpose.

First, create a file called .env somewhere on your computer. Open it with
a code editor and add the following strings to it:

DATABASE_URL=postgres://<db_user_you_created>:
<password_of_the_db_user>@//cloudsql/<your_project_id>:<region_of_the_db>:
<db_instance_name>/<db_name>

GS_BUCKET_NAME=<your bucket name>
SECRET_KEY=<just enter a random key here...>

You have to enter your data in the bolded text fields. First we are defining
a key called DATABASE_URL. We’ll use this inside our django project to



connect to the database we just created on cloud console. In case you are
confused as to what “<your_project_id>:<region_of_the_db>:
<db_instance_name>/<db_name>” mean, this is the connection string used
to identify the database you created earlier.

If you have trouble recalling the names of the database and instance name
of cloud sql,  simply head over to
https://console.cloud.google.com/sql/instances/, and you will see the database
you created earlier listed over there. Click your instance and you’ll be taken
to it’s detail page. After scrolling down a bit, you should see “Connection
String”.

 

Copy this connection string and put it into the DATABASE_URL
key.Note that this is your sql instance connection string. You you have to
append your database name to the end of this connection string. Also note to
add the database user and the database user’s password to the key. My
DATABASE_URL key will look like this.

DATABASE_URL=postgres://test:my_user_password_here@//cloudsql/django-3-307211:us-
central1:django-3-postgres-instance/django-3-postgres-database

https://console.cloud.google.com/sql/instances/


The GS_BUCKET_NAME is simple, you just need to append the name
of the cloud storage buket you created earlier. If you don’t remember your
bucket name, you can refer to it by navigating to the cloud storage page
inside cloud console.

Lastly, in the SECRET_KEY key, enter a random generated string of
length 50. You can generate a secret key by entering numbers manually or
using a generator like https://miniwebtool.com/django-secret-key-generator/.

After you are finished entering correct data into the .env file, head over to
https://console.cloud.google.com/security/secret-manager and create a new
secret (make sure you are on the correct project by checking th top navigation
bar). When you create a new secret, You’ll be redirected to a new form.

 

Give it the name “django-settings” and upload the .env file we just
created. Leave other fields as they are and create the secret. You will then be
redirected to the detail page of the secret you just created.

 

https://miniwebtool.com/django-secret-key-generator/
https://console.cloud.google.com/security/secret-manager


Note the highlighted secretid in the image attached below as we’ll be
using it later. It is under projects/<secretid>/secrets/django-settings. Next
select the Permission tab on the same page and click “Add Member”.
 



In the “New Members” field, using the <secretid> we copied in the step
before, add the following two strings:

<secretid>-compute@developer.gserviceaccount.com
<secretid>@cloudbuild.gserviceaccount.com

Filling the placeholders with my data I get:

834108577961-compute@developer.gserviceaccount.com
834108577961@cloudbuild.gserviceaccount.com

From the roles dropdown, select Secret Ma`nager Secret Accessor and
hit save.

 

Go back to secret manager page and create a new secret called
“superuser_password”. This secret will basically act as the password of the



django website superuser in production deployment. Keep this in mind as
you’ll be using it to logn to the admin panel of our website. In the value field,
set a password for the user:
 



Just like we did with the last secret, go to the permissions tab and select
Add members. Add only the following string in the New members field:

<secretid>@cloudbuild.gserviceaccount.com

Next, select the Secret Manager Secret Accessor as the role just like we
did previously. Finally, save and your secrets are ready. Let’s talk about why
we created a secret for super user password. We usually create the superuser
through the django terminal but in deployment, we’ll be creating it with a
migration file. We’ll pull the password from the environment dynamically
and create the user. You’ll see what it means in a bit.

Cloud Build access to Cloud SQL



Our cloud build will need to run the database migrations but it doesn’t
have access to it by default. Let’s give it appropriate access. Head over to
https://console.cloud.google.com/iam-admin/iam and again, make sure you
are under the correct project. You’ll be taken to a screen like so.
 

In the previos step when creating secret manager for django settings and
admin password, I asked you to hold on to the secretid. It’s this one if you
don’t remember and it is visible on your secret manager page.

https://console.cloud.google.com/iam-admin/iam


Now on the current page, “IAM & ADMIN” page that you are on, you
want to search for “<yoursecretid>@cloudbuild.gserviceaccount.com”, in
my case, it becomes: 834108577961@cloudbuild.gserviceaccount.com as
you can see on my screen (note: your id will be different from mine).

 



Click the edit “pencil” button next to the highlighted account and the
following sidebar will open.Click the “ADD ANOTHER ROLE” button and
select “Cloud SQL Client”. Click save and exit.

Preparing Code for Deployment
Now that our backing services have been configured, we can deploy our

django application to the web. However we need to make adjustments to our
code and make it ready for deployment.

For example, we need to configure the project to store and get static
assets from Cloud Storage, save data to Cloud sql etc. Also note that we will
be starting from a new and empty database. This means that whatever
redundant data we have on our local database, will not make it to the
production environment.  We also suggest you to create a copy of your
project in case anything goes wrong.

Installing Modules

Google cloud run will need a way to know which python modules our
project uses. For that, we will create a file called requirements.txt and put all
of the modules required by our application inside that file. Go to the root of
your project’s directory and run the following command(make sure your
virtual env is running).

(MyProject) E:\MyProject\financeblog>pip freeze > requirements.txt

Running the above command should have created a file called
requirements.txt in the root of your project directory. If you’ve followed the
tutorial so far, the requirements.txt file will have the following content
(versions might differ).
 

asgiref==3.3.1
Django==3.1.3



django-cors-headers==3.6.0
django-crispy-forms==1.10.0
djangorestframework==3.12.2
djangorestframework-simplejwt==4.6.0
Markdown==3.3.3
Pillow==8.0.1
psycopg2==2.8.6
PyJWT==2.0.0
pytz==2020.4
sqlparse==0.4.1

For our production environment, we will need a few more python
modules e.g django-storages for connecting to the Cloud Storage, django-
environs for managing environment variables etc. Add the following new
modules to our requirements.txt file so it looks like this.

gunicorn==20.0.4
psycopg2-binary==2.8.5
google-cloud-secret-manager==2.1.0
google-auth==1.24.0
django-storages[google]==1.9.1
django-environ==0.4.5

We’ve removed one module i.e. psycopg2, which we were using to
connect to our local database. Our cloud version woud not be needing this
module.

Creating Super User

Since we will be starting from an empty database, we will not have our
superuser on the produciton version by default, we will have to create one.
However it will be very difficult to open a terminal in the context of our
running application once it is on the cloud. Therefore we will not be able to
create a django superuser the normal way i.e. by running the createsuperuser
command.



We will use a technique called data migration. It is a way of making
changes to the database (these can be CRUD operations) by regular migration
files. If you remember, Django creates a migration file for each of the Model
we define or make changes to and when we run our migrations, those schema
changes get updated to the database. A data migration is similar but we have
to create the migration file ourselves and it will make changes to the data
inside the database.

Creating Data Migration for Superuser

If we create a migration file in one of our existing applications, it can
cause conflicts with the existing Django migration files of that specific
application, that is why, we will create a new application. Head over to the
root directory of your project and create a new application by running the
following command.

(MyProject) E:\MyProject\financeblog>python manage.py startapp superuser

This command will create a new application called superuser in your
project. This application will have no functionality, we will only be using it
to create our data migration. As stated before, if we were to create a data
migration in one of our existing applications, it would clash with one of the
existing migrations and while those are solvable, they are very hard to debug.
That is why we are choosing this simple approach. Next head over to the
settings.py located inside your project’s directory under the path.

Add the application we just created to the settings.py where our other
applications are listed.

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',



'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'blog',
'profiles',
'crispy_forms',
'advice',
'rest_framework',
'superuser' # <-new app here
]

Now that our application is registered, we can create the data migration
file by running the following command.

(MyProject) E:\MyProject\financeblog>manage.py makemigrations --empty superuser
Migrations for 'superuser':
superuser\migrations\0001_initial.py

This command will create a data migration file for us inside our
superuser application. Open the newly created file in your superuser
application directory.

 

Override the contents of the file with the following code.

from django.db import migrations

import google.auth
from google.cloud import secretmanager as sm

def createsuperuser(apps, schema_editor):



# Retrieve secret from Secret Manager
project_id = "django-3-307211"
_, project = google.auth.default()
client = sm.SecretManagerServiceClient()
admin_password = client.access_secret_version(request={"name":

"projects/"+project_id+"/secrets/superuser_password/versions/1"}).payload.data.decode("UTF-
8")

# Create a new user using acquired password
from django.contrib.auth.models import User
User.objects.create_superuser("admin", password=admin_password)

class Migration(migrations.Migration):

initial = True

dependencies = [
]

operations = [
migrations.RunPython(createsuperuser)

]

The code is a bit complicated but we will simplify it for you. The only
important part of this code is this.

# Retrieve secret from Secret Manager
project_id = "django-3-307211"
_, project = google.auth.default()
client = sm.SecretManagerServiceClient()
admin_password = client.access_secret_version(request={"name":

"projects/"+project_id+"/secrets/superuser_password/versions/1"}).payload.data.decode("UTF-
8")

# Create a new user using acquired password
from django.contrib.auth.models import User
User.objects.create_superuser("admin", password=admin_password)

Since our project will be ran in the cloud, we will have access to our
project by using the googl auth module. We are retrieving the current project
and then using that project’s name, we are pulling the admin_password
secret we created earlier in our secret manager. Also note that in the
project_id variable, you have to put your cloud console project id. Mine is



django-3-307211 so i’ve used that. We don’t have to authenticate ourselves
here, as this code will be executed in the “Cloud Run” Service where we
will already be authenticated.

In short, In this file we are using the google cloud serect manager module
to retrieve our password that we stored earlier in our Google Secret Manager
and used it to create a new superuser.

Now whenever we run our migrations, Django will look at this migration
file and create a superuser with the password supplied by the secret manager.
Of course it will give us error as our code is right now so let’s move on to
adjusting our code.

Configuring the settings.py file

We need to configure our project settings. For example, we are currently
storing static and media files in our local storage using the “STATIC_URL”
and “MEDIA_URL” settings. We need to remove these and configure the
project so it uses the Cloud storage. We also need to import the secret
manager .env file that we uploaded to google secret manager earlier. We will
get the connection string for the db from the env file.

You know the drill, head over to the settings.py file of our project.
Before proceeding further, if you haven’t already created a backup of the
project, at least create a backup of the settings.py file. This file will undergo,
as you might expect, the thoughest surgery. Before we dive into the details of
what needs to be changed, here is the final fully functional settings.py.

from pathlib import Path
import io
import environ
import google.auth
from google.cloud import secretmanager

#create instance of environment variable



env = environ.Env()
#retrieve current project from google cloud
_, project = google.auth.default()
# name of the secret manager where we uploaded our .env file
SETTINGS_NAME = "django_settings"
#creating instance of secret manager to pull secrets from
client = secretmanager.SecretManagerServiceClient()
project_id = "django-3-307211"
payload = client.access_secret_version(request={"name":

"projects/"+project_id+"/secrets/django-settings/versions/1"}).payload.data.decode("UTF-8")
# load secret manager data into environment variable
env.read_env(io.StringIO(payload))

BASE_DIR = Path(__file__).resolve().parent.parent
SECRET_KEY = env("SECRET_KEY")
DEBUG = False
ALLOWED_HOSTS = ["*"]
INSTALLED_APPS = [

'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'blog',
'profiles',
'crispy_forms',
'advice',
'rest_framework',
'superuser' ,
'storages'
]

MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'financeblog.urls'
TEMPLATES = [

{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {

'context_processors': [



'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',

],
},

},
]

WSGI_APPLICATION = 'financeblog.wsgi.application'
DATABASES = {"default": env.db()}

…

#responsible for pulling the cloud storage bucket name
GS_BUCKET_NAME = env("GS_BUCKET_NAME")
# setting the default storage of our django to cloud storage
DEFAULT_FILE_STORAGE = "storages.backends.gcloud.GoogleCloudStorage"
# setting cloud storage as default for putting static asset
STATICFILES_STORAGE = "storages.backends.gcloud.GoogleCloudStorage"
# making files available to public view
GS_DEFAULT_ACL = "publicRead"

We haven’t changed the file too much – but these changes are make-or-
brake type of changes for the Cloud Deployment. We have added explanation
comments at the part that changed. Let’s look at the part where we added new
code and chaned previuos code.

import io
import environ
import google.auth
from google.cloud import secretmanager

Here we are importing a module called environ(package is django-
environ). We will be using the module for creating environment variables.
Speaking of environment variables, we will be pulling these from our Google
Secret Manager using the google.auth and google.cloud modules.

#create instance of environment variable
env = environ.Env()
#retrieve current project from google cloud
_, project = google.auth.default()



# name of the secret manager where we uploaded our .env file
SETTINGS_NAME = "django_settings"
#creating instance of secret manager to pull secrets from
client = secretmanager.SecretManagerServiceClient()
project_id = "django-3-307211"
payload = client.access_secret_version(request={"name":

"projects/"+project_id+"/secrets/django-settings/versions/1"}).payload.data.decode("UTF-8")
# load secret manager data into environment variable
env.read_env(io.StringIO(payload))

In this piece of code, we are first creating an instance of the environ
module. Next we are fetching the google cloud project from the google auth
module. How does it know which project we are talking about? It will know
this because this code will be deployed to a specific cloud project i.e. django-
3 google cloud project in my case.

If you remember, we called our secret manager which holds our env file,
“django_settings”. We are using this name to pull the .env file from our
Secret Manager and feeding it to the environment variable we created earlier.
As we stated before, note the connection string, you have to pass your project
id.

SECRET_KEY = env("SECRET_KEY")

We are now pulling the secret key from our environment variable. It gets
this from the secret manager it pulled in the previos step.

DEBUG = False

We have also set debug to false so error messages aren’t logged on the
screens of the users browsing our website.

ALLOWED_HOSTS = ["*"]



In ALLOWED_HOSTS setting, we have set the asterik character which
basically means to allow access from any url. Since we want the whole world
to be able to browse our website, we used this setting.

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'blog',
'profiles',
'crispy_forms',
'advice',
'rest_framework',
'superuser' ,
'storages'
]

We have added an app called “storages” to our list of installed apps. This
application will be responsible for letting us communicate with Cloud
Storage.

DATABASES = {"default": env.db()}

In our databases setting, we are pulling the connection string from our
environment variable. If you remember, we added the connection string to the
.env file before we saved it to the Secret Manager. The .db() method
automatically fetches any database settings we have on our environment
variable. We could have simply stated env(“DATABASE_URL”) as we did
with pulling the secret key, but this is the preferred method.

#responsible for pulling the cloud storage bucket name
GS_BUCKET_NAME = env("GS_BUCKET_NAME")
# setting the default storage of our django to cloud storage
DEFAULT_FILE_STORAGE = "storages.backends.gcloud.GoogleCloudStorage"
# setting cloud storage as default for putting static asset
STATICFILES_STORAGE = "storages.backends.gcloud.GoogleCloudStorage"



# making files available to public view
GS_DEFAULT_ACL = "publicRead"

We are getting our cloud storage bucket name from the environment
variable. Next we are setting the default static assets storage as well as the
storage for media files so it uses Cloud Storage bucket. Lastly, we are making
the files stored on Cloud Storage bucket accessible to the public internet as
we want users to be able  to view media files and use our static assets (css,
and js files).

If you noticed, we removed the “STATIC_URL”,“MEDIA_URL” and
“MEDIA_ROOT” as those settings used local storage for storing media and
asset files. These are all the changes we’ve made to the code.

Changing Image URLs in our REST APIs

Currently, the url links of the images returned in our REST APIs of the
Advice application are not configured for production. That is because by
default when using local storage, DRF(Django rest framework) only returns
the relative path of media files, not the absolute path. A path to an image
looks like “/media/image1.jpg”.

That is why we have appended the name of the domain before this string
and then we returned the response. This was good in development but since
we are now using storage buckets, DRF will return full absolute url paths. We
have to adjust the current code. Head over to the views.py file found inside
advice>views.py. At line 33, we have the following code.

"user_image":request.build_absolute_uri(advice.author.profile.image.url),

Change it to:

"user_image":advice.author.profile.image.url,



At line 51, we have the previous same code:

"user_image":request.build_absolute_uri(advice.author.profile.image.url),

Again, change it to:

user_image = advice.author.profile.image.url

As you can see, before we were building the full image path ourselves,
but now we are simply returning the path returned by django as it’ll be a full
path to where the images will be stored on storage bucket.

Containerizing the project
As we stated before, in google cloud run, Docker containers are run. We

need to containarize our project. In the root of your project, create a file
called Dockerfile. Add the following code to it.

FROM python:3.8-slim

ENV APP_HOME /app
WORKDIR $APP_HOME

#better loggin
ENV PYTHONUNBUFFERED 1

# Install modules
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# moving code to the container
COPY . .

#run the service on startup with 8 threads as well as a port
CMD exec gunicorn --bind 0.0.0.0:$PORT --workers 1 --threads 8 --timeout 0

financeblog.wsgi:application



As we stated before, Docker acts similarly to a virtual machine. Think of
this file like it’s a set of instructions for installing a virtual machine along
with some settings such as installing python, running a server etc. This is
basically what we have done.

If we were to write each and every step ourself, this file would get too
long. For example, we would first have to tell docker which os we want, we
will then have to specify which server we want and a lot more steps. That is
why we used a pre-existing image called python:3.8-slim. Running this
command installs a version of linux along with python set up on it without us
having to write those instructions ourselves.

Next we are setting a directory called “app” where our code will live. We
are then moving the requirements.txt file we created earlier(it contains the
required python modules for our project) to the app directory. We are then
runnng the “pip install” command to install all the modules listed in the
requirements.txt file. Finally we are copying our whole code to the working
app directory. Lastly, we are running  a service when our docker image will
run. We are using gunicorn as the web server.

cloudmigrate.yml

We need a way for cloud console to run some django commands for us,
for example, applyin migrations as well as run our application. For this we
can create a file called cloudmigrate.yml which will run these commands for
us. This file is used by Cloud Build to run our application. In the root of the
project, create a file called cloudmigrate.yml and add the following code to
it.

# [START cloudrun_django_cloudmigrate]
steps:

- id: "build image"
name: "gcr.io/cloud-builders/docker"
args: ["build", "-t", "gcr.io/${PROJECT_ID}/${_SERVICE_NAME}", "."]

- id: "push image"



name: "gcr.io/cloud-builders/docker"
args: ["push", "gcr.io/${PROJECT_ID}/${_SERVICE_NAME}"]

- id: "apply migrations"
name: "gcr.io/google-appengine/exec-wrapper"
args:

[
"-i",
"gcr.io/$PROJECT_ID/${_SERVICE_NAME}",
"-s",
"${PROJECT_ID}:${_REGION}:${_INSTANCE_NAME}",
"-e",
"SETTINGS_NAME=${_SECRET_SETTINGS_NAME}",
"--",
"python",
"manage.py",
"migrate",

]

- id: "collect static"
name: "gcr.io/google-appengine/exec-wrapper"
args:

[
"-i",
"gcr.io/$PROJECT_ID/${_SERVICE_NAME}",
"-s",
"${PROJECT_ID}:${_REGION}:${_INSTANCE_NAME}",
"-e",
"SETTINGS_NAME=${_SECRET_SETTINGS_NAME}",
"--",
"python",
"manage.py",
"collectstatic",
"--verbosity",
"2",
"--no-input"

]

substitutions:
_INSTANCE_NAME: django-3-postgres-instance
_REGION: us-central1
_SERVICE_NAME: blog-service
_SECRET_SETTINGS_NAME: django_settings

images:
- "gcr.io/${PROJECT_ID}/${_SERVICE_NAME}"

# [END cloudrun_django_cloudmigrate]



A cloudmigrate.yml file consists of steps of instructions that we will run.
Let’s look at the first instruction

- id: "build image"
name: "gcr.io/cloud-builders/docker"
args: ["build", "-t", "gcr.io/${PROJECT_ID}/${_SERVICE_NAME}", "."]

 

We have given each instruction an id. The name field points to pre-made
containers available on google cloud, also called Cloud Builders, to run our
build configuration. In this comand, we are using the docker cloud builder to
build our local container.

id: "push image"
name: "gcr.io/cloud-builders/docker"
args: ["push", "gcr.io/${PROJECT_ID}/${_SERVICE_NAME}"]

 

This next step will push our built container to Container Registry on
Cloud console.

id: "apply migrations"
name: "gcr.io/google-appengine/exec-wrapper"
args:

[
"-i",
"gcr.io/$PROJECT_ID/${_SERVICE_NAME}",
"-s",
"${PROJECT_ID}:${_REGION}:${_INSTANCE_NAME}",
"-e",
"SETTINGS_NAME=${_SECRET_SETTINGS_NAME}",
"--",
"python",
"manage.py",
"migrate",

]

This step is self explanatory, we are running our migrations.



id: "collect static"
name: "gcr.io/google-appengine/exec-wrapper"
args:

[
"-i",
"gcr.io/$PROJECT_ID/${_SERVICE_NAME}",
"-s",
"${PROJECT_ID}:${_REGION}:${_INSTANCE_NAME}",
"-e",
"SETTINGS_NAME=${_SECRET_SETTINGS_NAME}",
"--",
"python",
"manage.py",
"collectstatic",
"--verbosity",
"2",
"--no-input"

]

And lastly, we are running the collectstatic command. This command will
be new to you but the idea behind this command is to copy all of the static
assets used in your project (images, css and js files) and put them in your
storage location (in our case this is cloud storage bucket.).

substitutions:
_INSTANCE_NAME: django-3-postgres-instance
_REGION: us-central1
_SERVICE_NAME: blog-service
_SECRET_SETTINGS_NAME: django_settings

Lastly, in this section we have defined some variables. We used these
variables throughout the file. Cloud console provides a number of
environment variables to the cloudmigrate.yml including the
PROJECT_ID (you can see that we didn’t define it but still used it in this
file) variable but it doesn’t provide every information we need which is why
we created some of our own variables.

Note the following:
 

_INSTANCE_NAME: refers to the name of our database



instance. Not that I am not talking about database, but database
instance.

_REGION: This settings determines where our service will be
hosted. It will still be accessible from anywhere in the world
though. Keep it as it is.

_SERVICE_NAME: This is the name we want to give our
running application. I’ve called mine blog-serivce, you can name it
whatever you want but keep it in mind as you’ll  have to use it in
the near future.

_SECRET_SETTINGS_NAME: This is the name of the
secret where we stored our .env file.

Deploying the Django App
Now our code is ready to be deployed.  Now head over to the root of your

project directory and run this command (Make sure you put your database
instance name in the highligted text):

gcloud builds submit --config cloudmigrate.yaml --substitutions _INSTANCE_NAME=django-3-
postgres-instance,_REGION=us-central1

Running this command will build our docker container, run migrations
and collect static assets into the cloud storage bucket. This will also push our
built container to Cloud Registry. You will see a number of messages logged
to your console as shown below.
 



Now that our Docker container is built and available on cloud console,
run the following command to deploy Cloud Run service.

gcloud run deploy <service_name_specified_in_cloudmigrate.yml_file> --platform managed --region
us-central1 --image gcr.io/<project_id>/<service_name>--add-cloudsql-instances <project_id>:us-
central1:<database_instance_name> --allow-unauthenticated

Make note of the highlighted content. Put your project’s values inside the
highlighted content. My command looks like this:

gcloud run deploy blog-service --platform managed --region us-central1 --image gcr.io/django-3-
307211/blog-service --add-cloudsql-instances django-3-307211:us-central1:django-3-postgres-instance
--allow-unauthenticated

Running this command, you’re code will be deployed as a cloud run
service and if everything goes successfull, you’ll receive a success message
and a url link to your deployed service. I received the link https://blog-
service-tksu6kd5hq-uc.a.run.app.

 

https://blog-service-tksu6kd5hq-uc.a.run.app


For security concerns, you should first head over to the django admin
panel and login using the credentials we specified in our migrations file. If
you remember, we called our user “admin”. The password for this user is
stored in the superuser_password secret stored in secret manager. Use these
credentials to log in and create a new user.

Attaching a domain
Our code is live and our application works perfectly.The only thing left is

to hook it up to a domain name. We are assuming that you have already
bought a domain. We bought Our domain from Google Domains and have
already linked it to our cloud project. Head over to
https://console.cloud.google.com/run/domains

You should be taken to this screen. Make sure you are under the correct
project by looking at the dropdown in the navgiation bar. Click the Add
Mapping button. In the first dropdown, select our cloud run service that we
deployed earlier. I named my service blog-service so I will select that. Next
it will create another field between the two fields and ask you to verify your
domain name.

https://console.cloud.google.com/run/domains


 



Next, enter your domain name and it will ask you verify your domain.
 



Next click the “VERIFY IN WEBMASTER CENTRAL” link and it
will take you to the following page:

 



From the dropdown, select your domain registrar. Mine is Google
Domains so I selected that. It will give you a string and you have to update
your domain’s DNS record with the given string.
 

Copy this string and put it in the DNS records of your domain. The name



of the page on your domain registrar’s website may be something like DNS,
Name Server Management, or Control Panel.

Since I’m using Google Domain, I’ll show you my steps. For google
domains, head over to
https://domains.google.com/registrar/<your_domain_name_here>. So for
me it becomes. https://domains.google.com/registrar/django3.org

Then head over to the DNS page and scroll down to the very bottom to
the following section. In the first field, where it says Name, leave it empty. It
will be @ by default. If your registrar is different, this field might be called
Host or Alias. Next, select TXT as the type. In the TTL field, leave it set to
default. In my case it is 1 hour. Lastly in the data field, enter the value you
copied earlier from web master.
 

Hit add. Go back to the webmaster page from where you copied the string
and click the verify button. It might give you an error saying it wasn’t able to
verify your domain but wait a few minutes and try again. Now head back to
the page where we were adding our custom mapping and hit the refresh
button.
 

 

https://domains.google.com/registrar/%3cyour_domain_name_here
https://domains.google.com/registrar/django3.org


As you can see, it says it was verified successfully. Leave the subdomain
field as blank and press continue. Next it will show you the following
content.

You need to update the DNS records on your domain with the records
provided. In case of Google Domain, you need to head back to the same page
where you added the verification string. Add the records here. After adding
the records, my DNS page becomes like so.



 

Now head back to the custom mapping page hit done.
 

Now you just need to wait for around 48 or so hours and you’ll be able to
access your web application through the domain https://django3.org.

Finally, you’ve made it! You are a queen/king/they! Now, there is
abosutely nothing between you and your dream Application! Below, you will

https://django3.org


find some basic questions related to what we’ve learned so far. Feel free to
reach out to me on LinkedIn!

QUIZ

Question 1

You have the following django template:
 

<!DOCTYPE html>
<html lang="en">
<head>

<link rel="stylesheet" href="{% static 'main.css' %}">
<title>Document</title>

</head>
<body>

<h1>Hello</h1>    
</body>
</html>

For some reason, my template is not loading the styles. Just looking at the
template, can you tell what might be the cause?
 

Question 2

Which of the following settings define the path for user uploaded images?
 

1. STATIC_URL
2. MEDIA_URL
3. STATICFILES_DIRS
4. MEDIA_ROOT

 

Question 3



Considering I’m passing a path, view, and a name to the following URL
pattern, can you tell what is wrong with it?
 

path("home/", views.home, "home-view")

Question 4

What is wrong with the following class-based view?
 

class ArticleListView(generics.ListView):
ordering = ['-published_date']
paginate_by = 3

Question 5

Suppose I have the following model:
 

class Comment(models.Model):
content = models.TextField()
user = models.ForeignKey(User, on_delete=models.CASCADE)
is_approved = models.BooleanField()

Which of the following will return all the instances of Comment whose
is_approved attribute is True?
 

1. Comment.objects.all(is_aprproved=True)
2. Comment.objects.get(is_approved=True)
3. Comment.objects.filter(is_approved=True)
4. Comments.filter(is_approved=True)

 

Question 6

Considering you are in the root direcotry of a Django project,which  of
the following commands will create a superuser?



 

1. python manage.py addsuperuser
2. python manage.py createadmin
3. python manage.py createsuperuser
4. python manage.py createadmin

Question 7

Consider the following code.
 

class Account(models.Model):
story = models.TextField()
user = models.ForeignKey(User, on_delete=models.CASCADE)

@receiver(post_save, sender=User)
def random_function(sender, instance, created, **kwargs):

if created:
Account.objects.create(user=instance)  

What does the random_function function do?
 

1. When a User instance is created, random_function function creates
an instance of Account and assigns it the newly created User.

2. When a User instance is created, random_function function updates
an instance of Account by assigning it the newly created User.

3. When a User instance is updated, random_function function creates
an instance of Account and assign it the updated User.

4. When a User instance is updated, random_function function
updates an instance of Account by assigning it the updated created
User. 
 

Question 8

Considering I have an application called shop, it has the following
templates directory structure:



 
templates/

shop/
tech/

shop_tech_list.html
shop_cart.html

Considering I have some view inside my shop application, what path
should I pass the view to display the shop_tech_list.html?
 

1. “tech/shop_tech_list.html”
2. “shop_tech_list.html”
3. “templates/shop/tech/shop_tech_list.html”
4. “shop/tech/shop_tech_list.html”

Question 9

Considering I have a model called Patient, which of the following code
snippet will make it available on Django’s admin site?
 

1. admin.register(Patient)
2. admin.site.add(Patient)
3. admin.Site.add(Patient)
4. admin.site.register(Patient)

Question 10

Which of the following will send a success flash message?
 

1. messages(request, “A flash message”)
2. messages.success(request, “A flash message”)
3. messages.success(“A flash message”)
4. messages(“A flash message”)



Solutions
Question 1

The template is missing the {% load_static %} template tag which is
why {% static ‘main.css’ %} is not working.

Question 2
MEDIA_ROOT

Question 3

The name of the URL has to be passed through the named parameter
“named”.
 

path("home/", views.home, name="home-view")

Solution 4

The view is missing the required model parameter. Correct view would
be something list this:
 

class ArticleListView(generics.ListView):
model = Article
ordering = ['-published_date']
paginate_by = 3

Solution 5:
Comment.objects.filter(is_approved=True)

Solution 6:
python manage.py createsuperuser



Solution 7:

When a User instance is created, random_function funciton creates an
instance of Account and assigns it the newly created User.
 

Solution 8:
“shop/tech/shop_tech_list.html”

Solution 9:
admin.site.register(Patient)

Solution 10:
messages.success(request, “A flash message”)



Bibliography
 

1. https://docs.djangoproject.com/en/3.1/faq/general/#django-appears-
to-be-a-mvc-framework-but-you-call-the-controller-the-view-and-
the-view-the-template-how-come-you-don-t-use-the-standard-
names

2. https://www.enterprisedb.com/downloads/postgres-postgresql-
downloads

3. https://docs.djangoproject.com/en/3.1/topics/settings/
4. https://docs.djangoproject.com/en/3.1/ref/models/fields/
5. https://docs.djangoproject.com/en/3.1/topics/migrations/
6. https://docs.djangoproject.com/en/3.1/topics/auth/default/
7. https://docs.djangoproject.com/en/3.1/ref/contrib/admin/
8. https://docs.djangoproject.com/en/3.1/topics/db/queries/
9. https://docs.djangoproject.com/en/3.1/topics/templates

10. https://docs.djangoproject.com/en/3.1/howto/static-files/
11. https://docs.djangoproject.com/en/3.1/howto/static-

files/deployment/
12. https://docs.djangoproject.com/en/3.1/topics/signals/
13. https://docs.djangoproject.com/en/3.1/topics/forms/
14. https://docs.djangoproject.com/en/3.1/ref/contrib/messages
15. https://docs.djangoproject.com/en/3.1/topics/email/
16. https://docs.djangoproject.com/en/3.1/topics/class-based-

views/generic-display/
17. https://docs.djangoproject.com/en/3.1/topics/class-based-

views/mixins/
18. https://www.django-rest-framework.org/api-guide/serializers/
19. https://www.django-rest-framework.org/api-guide/authentication/
20. https://www.enterprisedb.com/postgres-tutorials/how-install-

postgres-docker
21. https://docs.python.org/3/whatsnew/3.9.html
22. https://docs.python.org/3/installing/index.html
23. https://cloud.google.com/python/django/run
24. https://codelabs.developers.google.com/codelabs/cloud-run-django

https://docs.djangoproject.com/en/3.1/faq/general/#django-appears-to-be-a-mvc-framework-but-you-call-the-controller-the-view-and-the-view-the-template-how-come-you-don-t-use-the-standard-names
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://docs.djangoproject.com/en/3.1/topics/settings/
https://docs.djangoproject.com/en/3.1/ref/models/fields/
https://docs.djangoproject.com/en/3.1/topics/migrations/
https://docs.djangoproject.com/en/3.1/topics/auth/default/
https://docs.djangoproject.com/en/3.1/ref/contrib/admin/
https://docs.djangoproject.com/en/3.1/topics/db/queries/
https://docs.djangoproject.com/en/3.1/topics/templates
https://docs.djangoproject.com/en/3.1/howto/static-files/
https://docs.djangoproject.com/en/3.1/howto/static-files/deployment/
https://docs.djangoproject.com/en/3.1/topics/signals/
https://docs.djangoproject.com/en/3.1/topics/forms/
https://docs.djangoproject.com/en/3.1/ref/contrib/messages
https://docs.djangoproject.com/en/3.1/topics/email/
https://docs.djangoproject.com/en/3.1/topics/class-based-views/generic-display/
https://docs.djangoproject.com/en/3.1/topics/class-based-views/mixins/
https://www.django-rest-framework.org/api-guide/serializers/
https://www.django-rest-framework.org/api-guide/authentication/
https://www.enterprisedb.com/postgres-tutorials/how-install-postgres-docker
https://docs.python.org/3/whatsnew/3.9.html
https://docs.python.org/3/installing/index.html
https://cloud.google.com/python/django/run
https://codelabs.developers.google.com/codelabs/cloud-run-django


25. https://cloud.google.com/run/docs/mapping-custom-domains
26. https://docs.python.org/3/library/datatypes.html
27. https://www.python.org/dev/peps/pep-0008/

https://cloud.google.com/run/docs/mapping-custom-domains
https://docs.python.org/3/library/datatypes.html
https://www.python.org/dev/peps/pep-0008/


Code Contents
Code 1 financeblog\financeblog\settings.py

Code 2 financeblog\financeblog\settings.py

Code 3 financeblog\financeblog\settings.py

Code 4 financeblog\financeblog\settings.py

Code 5 financeblog\blog\models.py

Code 6 financeblog\blog\admin.py

Code 7 - financeblog/blog/views.py

Code 8 - financeblog/blog/views.py

Code 9 - financeblog/blog/urls.py

Code 10 - financeblog/financeblog/urls.py

Code 11 - financeblog/blog/templates/blog/base.html

Code 12 financeblog\blog\templates\blog\list.html

Code 13 financeblog\blog\templates\blog\detail.html

Code 14 financeblog\financeblog\settings.py

Code 15 financeblog\profiles\models.py

Code 16 financeblog\financeblog\settings.py

Code 17 financeblog\financeblog\urls.py

Code 18 financeblog\profiles\admin.py

Code 19 financeblog\profiles\models.py



Code 20 financeblog\profiles\forms.py

Code 21 financeblog\profiles\views.py

Code 22 financeblog\financeblog\urls.py

Code 23 financeblog\profiles\templates\profiles\register.html

Code 24 financeblog\profiles\templates\profiles\register.html

Code 25 financeblog/profiles/views.py

Code 26 financeblog\blog\templates\blog\base.html

Code 27 financeblog\blog\templates\blog\base.html

Code 28 financeblog\financeblog\urls.py

Code 29 financeblog\profiles\templates\profiles\login.html

Code 30 financeblog\profiles\templates\profiles\logout.html

Code 31 financeblog\blog\templates\blog\base.html

Code 32 financeblog\profiles\views.py

Code 33 financeblog\blog\urls.py

Code 34 financeblog/profiles/templates/profiles/profiles.html

Code 35 financeblog\blog\templates\blog\base.html

Code 36 financeblog\blog\templates\blog\base.html

Code 37 financeblog\profiles\views.py

Code 38 financeblog\profiles\views.py

Code 39 financeblog\blog\urls.py



Code 40 finanaceblog/profiles/templates/profiles/update.py

Code 41 financeblog\financeblog\settings.py

Code 42 financeblog\financeblog\urls.py

Code 43 financeblog\profiles\templates\profiles\password_reset.html

Code 44
financeblog\profiles\templates\profiles\password_reset_done.html

Code 45
financeblog\profiles\templates\profiles\password_reset_confirm.html

Code 46
financeblog\profiles\templates\profiles\password_reset_complete.html

Code 47 financeblog\blog\views.py

Code 48 financeblog\blog\views.py

Code 49 financeblog\blog\views.py

Code 50 financeblog\blog\views.py

Code 51 financeblog\blog\urls.py

Code 52 financeblog\blog\templates\blog\blog_form.html

Code 53 financeblog\blog\models.py

Code 54 financeblog\blog\views.py

Code 55 financeblog\blog\views.py

Code 56 financeblog\blog\templates\blog\blog_confirm_delete.html

Code 57 financeblog\blog\views.py



Code 58 financeblog\blog\templates\blog\blog_list.html

Code 59 financeblog\profiles\views.py

Code 60 financeblog\blog\templates\blog\blog_detail.html

Code 61 financeblog\blog\templates\blog\blog_list.html

Code 62 financeblog\blog\models.py

Code 63 financeblog\blog\models.py

Code 64 financeblog\blog\templates\blog\base.html

Code 65 financeblog\profiles\models.py

Code 66 financeblog\profiles\admin.py

Code 67 financeblog\profiles\views.py

Code 68 financeblog\financeblog\urls.py

Code 69 financeblog\advice\templates\advice\question_form.html

Code 70 financeblog\advice\views.py

Code 71
financeblog\advice\templates\advice\question_confirm_delete.html

Code 72 financeblog\advice\templates\advice\question_detail.html

Code 73
financeblog\advice\templates\advice\question_confirm_delete.html

Code 74 financeblog\advice\models.py

Code 75 financeblog\advice\views.py

Code 76 financeblog\blog\templates\blog\blog_list.html



Code 77 financeblog\blog\templates\blog\base.html

Code 78 financeblog\advice\views.py

Code 79 financeblog\advice\views.py

Code 80 financeblog\advice\urls.py

Code 81 financeblog\advice\serializers.py

Code 82 financeblog\advice\views.py

Code 83 financeblog\advice\views.py

Code 84 financeblog\advice\templates\advice\question_detail.html

Code 85 financeblog\blog\templates\blog\base.html

Code 86 financeblog\advice\templates\advice\question_detail.html

Code 87 financeblog\advice\templates\advice\question_detail.html

Code 88 financeblog\advice\templates\advice\question_detail.html



Figure Contents
Figure 1 - Summary of the Django GitHub Repository

Figure 2 - Download Page for PostgreSQL Server

Figure 3 - It's crucial to remember this password

Figure 4 - Welcome Screen of a newly installed Django Project

Figure 5 - Setting a master password for the pgAdmin UI Access

Figure 6 - Dropdown Menu to create a new Database in pgAdmin

Figure 7 - UI Mask to create a new Database in pgAdmin

Figure 8 - Empty PostgreSQL Database for Django Project

Figure 9 - Translation of Data Model in models.py into actual DB
Changes

Figure 10 - Django 3 Core Tables saved in PostgreSQL Database.

Figure 11 - Folder Structure of a newly created Django 3 Application

Figure 12 - Blank Django Admin Login Interface

Figure 13 - Home Page of a logged in Admin in the Admin UI

Figure 14 - An input Form for every added and migrated Model

Figure 15 - Overview of Model Entries (table rows) in Admin UI

Figure 16 - Templates folder structure for the App 'Blog'

Figure 17 - Folder Structure for Static Django Assets

Figure 18 - Template extends tag, similar to Parent-Child Relationship



Figure 19 - List Template Top Page

Figure 20 - List Template Blog Display

Figure 21 - Detail Template

Figure 22 - Simplified Representation of the Request Flow

Figure 23 - One-to-One Relationship between Django-supplied User and
manually-created Profile model

Figure 24 Admin side UI

Figure 25 Adding a profile

Figure 26 List profile view

Figure 27 root profile view

Figure 28 Uploaded Image view in web

Figure 29 Adding link

Figure 30 Profile Section in Admin Site

Figure 31 Deleting User

Figure 32 After adding a new user

Figure 33 Register View

Figure 34 Intentionally wrong data fillup

Figure 35 Filling correct data

Figure 36 User list

Figure 37 financeblog\financeblog\settings.py

Figure 38 Updated register page



Figure 39 Crispy Template filter effect

Figure 40 User creation alert

Figure 41 Login View

Figure 42 After Successful login

Figure 43 After logout

Figure 44 Logged In. Hence there is a logout option

Figure 45 Logged In user

Figure 46 Different user profile

Figure 47 finanaceblog/profiles/forms.py

Figure 48 Update form

Figure 49 Profile Update Notification

Figure 50 Google Security

Figure 51 Password Reset form

Figure 52 Password reset email sent

Figure 53 Password reset email

Figure 54 New Password form

Figure 55 Blog Create View

Figure 56 Blog filled up

Figure 57 Detailed View

Figure 58 Successful redirection on the detailed view



Figure 59 Blog Updating

Figure 60 Blog Update successful

Figure 61 Deleting The blog

Figure 62 Object List

Figure 63 Single Blog

Figure 64 Logged Out View

Figure 65 Detailed blog view

Figure 66 Any length allowable

Figure 67 Adding validation

Figure 68 No blog in a site message

Figure 69 Validation rule on blog creation

Figure 70  Availability of the button "Write a blog."

Figure 71 One to Many relationships between question and advice

Figure 72 Question and advice view in Admin side

Figure 73 Question submission form

Figure 74 Error from the Question Model

Figure 75 Question generated in the admin side

Figure 76 Delete view of the questions

Figure 77 Single question view

Figure 78 Word adjustment



Figure 79 New button added for asking a question

Figure 80 View for the question model

Figure 81 Question created successfully

Figure 82 Question delete view

Figure 83 Question deleted successfully

Figure 84 Question section in the admin site

Figure 85 Adding new advice

Figure 86 Django template provided by rest-framework

Figure 87 Serialization De-Serialization mechanism

Figure 88 Without getting method view

Figure 89 Single attribute view

Figure 90 New instance view

Figure 91 All advice list

Figure 92 Question detail page when the user logged out

Figure 93 Question detail page when the user logged in

Figure 94 Live fetching of advice

Figure 95 Advice submitting

Figure 96 Newly created advice view



Table Contents
Table 1: Built-in Database Engines

Table 2: QuerySet Methods and Filters

Table 3: Django (Generic) View Types

Table 4: Important HttpRequest Attributes and Methods
 


	Dedication
	Foreword
	About this book
	PYTHON 3
	Introduction
	Why Python?
	Syntax and Variables
	What is a variable
	Basic Data Types in Python
	Variable Manipulation
	Variable Assignment
	Arithmetic Expressions
	Variable Names
	Data Types in Python
	List
	Tuple
	Set
	Dictionary
	Data-type Methods
	List Methods
	Set Methods
	Dictionary Methods
	Data typecasting
	User Input
	Conditional Expressions
	What is a Conditional Expression?
	What is a Logical Expression?
	Logical comparison
	Logical Operator: And
	Logical Operator: Or
	Logical Operator: Not
	Code Blocks
	IF statements
	else and elif clauses
	Programming Loops
	For Loops
	While Loops
	Programming Functions
	Parameters of a function
	Return value of a function
	Docstrings
	Type Checking
	Recursive functions
	Object-Oriented Programming
	Classes and Instances
	Class Methods
	Dunder Methods
	Class Inheritance
	DJANGO 3
	Why Django?

